Data-driven Dirichlet sampling on manifolds for structural health monitoring

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal do Rio de Janeiro (UFRJ)-
Autor(es): dc.creatorda Silva, Samuel-
Autor(es): dc.creatorRitto, Thiago G.-
Data de aceite: dc.date.accessioned2025-08-21T21:49:33Z-
Data de disponibilização: dc.date.available2025-08-21T21:49:33Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-07-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s40430-024-04986-9-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309289-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309289-
Descrição: dc.descriptionThe practical limitation of applying machine learning to structural health monitoring (SHM) is the availability of sufficient experimental data for training. However, obtaining an extensive training database can be expensive or complicated. Incomplete datasets can lead to overfitting, incorrect classification, or poorly generalized results. Various approaches have been proposed to overcome this limitation, including data augmentation techniques based on numerical models or data-driven methods. This paper presents a novel data-driven strategy for improving feature-SHM classification, utilizing manifold sampling with a Dirichlet distribution. The proposed approach respects the underlying manifold structure of the original datasets of the features. Two examples illustrate the method’s application: the Z-24 bridge dataset and a three-story building structure dataset from the Los Alamos National Laboratory. In both cases, the technique efficiently generates samples with minimal computational effort, facilitating data augmentation to enhance the training of unsupervised and/or supervised methods for SHM purposes.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartment of Mechanical Engineering Universidade Estadual Paulista (UNESP), SP-
Descrição: dc.descriptionDepartment of Mechanical Engineering Universidade Federal do Rio de Janeiro (UFRJ), RJ-
Descrição: dc.descriptionDepartment of Mechanical Engineering Universidade Estadual Paulista (UNESP), SP-
Descrição: dc.descriptionCNPq: 302378/2022-7-
Descrição: dc.descriptionCNPq: 306526/2019-0-
Idioma: dc.languageen-
Relação: dc.relationJournal of the Brazilian Society of Mechanical Sciences and Engineering-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDamage detection-
Palavras-chave: dc.subjectData augmentation-
Palavras-chave: dc.subjectData-driven-
Palavras-chave: dc.subjectDirichlet distribution-
Palavras-chave: dc.subjectSampling on manifolds-
Título: dc.titleData-driven Dirichlet sampling on manifolds for structural health monitoring-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.