A Simplicity Bubble Problem and Zemblanity in Digitally Intermediated Societies

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorOxford University Innovation-
Autor(es): dc.contributorNational Laboratory for Scientific Computing-
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.contributorLABORES-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAbrahão, Felipe S.-
Autor(es): dc.creatorCavassane, Ricardo P.-
Autor(es): dc.creatorWinter, Michael-
Autor(es): dc.creatorRodrigues, Mariana Vitti-
Autor(es): dc.creatorD’Ottaviano, Itala M. L.-
Data de aceite: dc.date.accessioned2025-08-21T21:35:05Z-
Data de disponibilização: dc.date.available2025-08-21T21:35:05Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/978-3-031-69300-7_20-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/309239-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/309239-
Descrição: dc.descriptionIn this article, we discuss the ubiquity of Big Data and machine learning in society and propose that it evinces the need of further investigation of their fundamental limitations. We extend the “too much information tends to behave like very little information” phenomenon to formal knowledge about lawlike universes and arbitrary collections of computably generated datasets. This gives rise to the simplicity bubble problem, which refers to a learning algorithm equipped with a formal theory that can be deceived by a dataset to find a locally optimal model which it deems to be the global one. In the context of lawlike (computable) universes and formal learning systems, we show that there is a ceiling above which formal knowledge cannot further decrease the probability of zemblanitous findings, should the randomly generated data made available to the formal learning system be sufficiently large in comparison to their joint complexity. Zemblanity, the opposite of serendipity, is defined by an undesirable but expected finding that reveals an underlying problem or negative consequence in a given model or theory, which is in principle predictable in case the formal theory contains sufficient information. We also argue that this is an epistemological limitation that may generate unpredictable problems in digitally intermediated societies.-
Descrição: dc.descriptionOxford Immune Algorithmics Oxford University Innovation-
Descrição: dc.descriptionDEXL National Laboratory for Scientific Computing-
Descrição: dc.descriptionCentre for Logic Epistemology and the History of Science University of Campinas-
Descrição: dc.descriptionAlgorithmic Nature Group LABORES-
Descrição: dc.descriptionSão Paulo State University-
Descrição: dc.descriptionSão Paulo State University-
Formato: dc.format351-366-
Idioma: dc.languageen-
Relação: dc.relationStudies in Applied Philosophy, Epistemology and Rational Ethics-
???dc.source???: dc.sourceScopus-
Título: dc.titleA Simplicity Bubble Problem and Zemblanity in Digitally Intermediated Societies-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.