Multi-Area Optimal Power Flow Problem Through Parallel Processing

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorAalto University-
Autor(es): dc.creatorDo Carmo Yamaguti, Lucas-
Autor(es): dc.creatorHome-Ortiz, Juan M.-
Autor(es): dc.creatorPourakbari-Kasmaei, Mahdi-
Autor(es): dc.creatorMantovani, Jose Roberto Sanches-
Data de aceite: dc.date.accessioned2025-08-21T22:06:04Z-
Data de disponibilização: dc.date.available2025-08-21T22:06:04Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2022-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/EEEIC/ICPSEurope57605.2023.10194619-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/308967-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/308967-
Descrição: dc.descriptionThe conventional approach to managing the electrical power system (EPS) operation involves a single independent system operator solving the optimal power flow (OPF) problem. However, the reality is that the EPS comprises multiple areas controlled by independent system operators who must ensure the security and privacy of data in the energy market. This work introduces a mixed-integer nonlinear programming model for solving the multi-area OPF problem, enabling independent solution of each area in the EPS system via parallel processing. Validation of the proposed model and solution technique is conducted using the RTS-96 bus system, showcasing satisfactory solutions yielded by the multi-area approach. Additionally, the proposed model is extended and analyzed under a security-constrained approach by solving some contingencies in the system.-
Descrição: dc.descriptionSão Paulo State University Department of Electrical Engineering-
Descrição: dc.descriptionAalto University Department of Electrical Engineering and Automation-
Descrição: dc.descriptionSão Paulo State University Department of Electrical Engineering-
Idioma: dc.languageen-
Relação: dc.relationProceedings - 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2023-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectMixed-integer nonlinear programming-
Palavras-chave: dc.subjectmulti-area power systems-
Palavras-chave: dc.subjectoptimal power flow-
Palavras-chave: dc.subjectparallel processing-
Título: dc.titleMulti-Area Optimal Power Flow Problem Through Parallel Processing-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.