Development of a soil moisture forecasting method for a landslide early warning system (LEWS): Pilot cases in coastal regions of Brazil

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorGeneral Coordination of Research and Development-
Autor(es): dc.contributorUniversity of Bath-
Autor(es): dc.creatorSousa, Isadora Araújo-
Autor(es): dc.creatorBortolozo, Cassiano Antonio-
Autor(es): dc.creatorGonçalves Mendes, Tatiana Sussel-
Autor(es): dc.creatorde Andrade, Marcio Roberto Magalhães-
Autor(es): dc.creatorNeto, Giovanni Dolif-
Autor(es): dc.creatorMetodiev, Daniel-
Autor(es): dc.creatorPryer, Tristan-
Autor(es): dc.creatorHowley, Noel-
Autor(es): dc.creatorCoelho Simões, Silvio Jorge-
Autor(es): dc.creatorMendes, Rodolfo Moreda-
Data de aceite: dc.date.accessioned2025-08-21T21:15:04Z-
Data de disponibilização: dc.date.available2025-08-21T21:15:04Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-10-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.jsames.2023.104631-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/308857-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/308857-
Descrição: dc.descriptionClimate change has increased the frequency of extreme weather events and, consequently, the number of occurrences of natural disasters. In Brazil, among these disasters, floods, flash floods, and landslides account for the highest number of deaths, the latter being the most lethal. Bearing in mind the importance of monitoring areas susceptible to disasters, the REMADEN/REDEGEO project of the National Center for Monitoring and Natural Disaster Alerts (Cemaden) has promoted the installation of a network of soil moisture sensors in regions with a long history of landslides. This network was used in the present paper as a base to develop a system for moisture forecasting in those critical zones. The time series of rainfall and moisture were used in an inversion algorithm to obtain the geotechnical parameters of the soil. Then the geotechnical model was used in a forward calculation with the rainfall prediction to obtain the soil moisture forecast. The landslide events of March 2020 and May 2022 in Guarujá and Recife, respectively, were used as study cases for the developed system. The obtained results indicate that the proposed methodology has the potential to be used as an important tool in the decision-making process for issuing landslide alerts.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFinanciadora de Estudos e Projetos-
Descrição: dc.descriptionSão Paulo State University (Unesp) Institute of Science and Technology-
Descrição: dc.descriptionCemaden - National Center for Monitoring and Early Warning of Natural Disasters General Coordination of Research and Development-
Descrição: dc.descriptionDepartment of Mathematical Sciences University of Bath-
Descrição: dc.descriptionSão Paulo State University (Unesp) Institute of Science and Technology-
Descrição: dc.descriptionCNPq: 152269/2022-3-
Descrição: dc.descriptionCNPq: 301201/2022-6-
Descrição: dc.descriptionFinanciadora de Estudos e Projetos: MCTI/FINEP/FNDCT 01/2016-
Idioma: dc.languageen-
Relação: dc.relationJournal of South American Earth Sciences-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBrazil-
Palavras-chave: dc.subjectData inversion-
Palavras-chave: dc.subjectLandslides-
Palavras-chave: dc.subjectSensor network-
Palavras-chave: dc.subjectSoil moisture modeling-
Título: dc.titleDevelopment of a soil moisture forecasting method for a landslide early warning system (LEWS): Pilot cases in coastal regions of Brazil-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.