Synergizing ChatGPT and experiential learning: unravelling TOC based production planning and control variants through the dice game

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Louisville-
Autor(es): dc.contributorDr. B.R. Ambedkar National Institute of Technology-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorGupta, Mahesh-
Autor(es): dc.creatorGupta, Ajay-
Autor(es): dc.creatorde Souza, Fernando Bernardi-
Autor(es): dc.creatorIkeziri, Lucas Martins-
Autor(es): dc.creatorDatt, Mohit-
Data de aceite: dc.date.accessioned2025-08-21T20:14:52Z-
Data de disponibilização: dc.date.available2025-08-21T20:14:52Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1080/00207543.2024.2372654-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/308712-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/308712-
Descrição: dc.descriptionAmidst debates around the impact of Artificial Intelligence (AI) technologies like ChatGPT in education, our study explores their role in enhancing the ‘theory of experiential learning’, particularly in Production and Operations Management (POM). We demonstrate how Goldratt’s Dice Game, as an experiential learning aid, allows undergraduate students in a senior-level production planning and control (PPC) course to apply knowledge and skills in a dynamic, interactive setting. This study presents how these students, supported by ChatGPT's insights, gain a deeper understanding of the DBR system, focusing on buffer management, internal (i.e. a dominant capacity constraint), external (i.e. market demand constraint), and interactive decision-making processes. We detail manual and Excel-based simulation models for Drum-Buffer-Rope (DBR) variants, reflecting on experiential learning outcomes. Concluding with managerial implications, our research advocates for the synergy of ChatGPT-aided theoretical learning with experiential models, presenting a comprehensive approach for understanding POM fundamentals such as Production Planning & Control (PPC) systems.-
Descrição: dc.descriptionDepartment of Information Sciences Analytics and Operations College of Business University of Louisville-
Descrição: dc.descriptionDepartment of Industrial and Production Engineering Dr. B.R. Ambedkar National Institute of Technology-
Descrição: dc.descriptionProduction Engineering Department São Paulo State University-
Descrição: dc.descriptionProduction Engineering Department São Paulo State University-
Formato: dc.format1209-1234-
Idioma: dc.languageen-
Relação: dc.relationInternational Journal of Production Research-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectexperiential games-
Palavras-chave: dc.subjectProduction planning-
Palavras-chave: dc.subjectsimulation-
Palavras-chave: dc.subjecttheory of constraints-
Título: dc.titleSynergizing ChatGPT and experiential learning: unravelling TOC based production planning and control variants through the dice game-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.