Ionospheric scintillation simulation based on neural networks

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorInstituto Tecnològico de Aeronáutica (ITA)-
Autor(es): dc.contributorUniversidade Catélica Do Rio de Janeiro (PUC-Rio)-
Autor(es): dc.contributorComputer Science Division-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorFreitas, Moises J. S.-
Autor(es): dc.creatorMoraes, Alison O.-
Autor(es): dc.creatorCosta, Emanoel-
Autor(es): dc.creatorMaximo, Marcos R. O. A.-
Autor(es): dc.creatorDe S. Faria, Clodoaldo-
Data de aceite: dc.date.accessioned2025-08-21T18:53:37Z-
Data de disponibilização: dc.date.available2025-08-21T18:53:37Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2022-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/EUROCON56442.2023.10198940-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/308710-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/308710-
Descrição: dc.descriptionThereis a demand for the development of GNSS positioning processing techniques that are more tolerant to the effects of the low latitude ionosphere (in particular, scintillation). The possibility of simulating scintillating channels supports the development of more sophisticated test benches and receivers. This paper proposes a neural network-based simulator of ionospheric amplitude scintillation. This synthetic scintillation simulator uses autoencoders and generative adversarial networks (GANs) to generate time series that follow the statistical characteristics of the \alpha-\mu fading model. A part of the proposed network tries to create a synthetic signal, similar to the field data. The proposed neural network was trained and validated with scintillation data acquired in Sao Jose dos Campos, Brazil, in February 2012 and November 2014. The results of the proposed method show that the simulator yields the correct values of the scintillation index, and the estimated fading coefficients are also close to the specified values. These aspects show that this kind of approach can be promising in the simulation of fading channels. Future improvements of the model are also be discussed.-
Descrição: dc.descriptionInstituto Tecnològico de Aeronáutica (ITA)-
Descrição: dc.descriptionCentro de Estudos em Telecomunicações Pontificia Universidade Catélica Do Rio de Janeiro (PUC-Rio)-
Descrição: dc.descriptionInstituto Tecnológico de Aeronáutica (ITA) Autonomous Computational Systems Lab (LAB-SCA) Computer Science Division-
Descrição: dc.descriptionUniversidade Estadual Paulista (UNESP)-
Descrição: dc.descriptionUniversidade Estadual Paulista (UNESP)-
Formato: dc.format84-88-
Idioma: dc.languageen-
Relação: dc.relationEUROCON 2023 - 20th International Conference on Smart Technologies, Proceedings-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectfading channels-
Palavras-chave: dc.subjectGNSS-
Palavras-chave: dc.subjectneural network-
Palavras-chave: dc.subjectscintillation-
Palavras-chave: dc.subjectsimulation-
Título: dc.titleIonospheric scintillation simulation based on neural networks-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.