
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Agricultural Sciences and Natural Resources University of Khuzestan | - |
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.contributor | Paulista University—UNIP | - |
| Autor(es): dc.creator | Abdanan Mehdizadeh, Saman | - |
| Autor(es): dc.creator | Sari, Mohsen | - |
| Autor(es): dc.creator | Orak, Hadi | - |
| Autor(es): dc.creator | Pereira, Danilo Florentino | - |
| Autor(es): dc.creator | Nääs, Irenilza de Alencar | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T19:23:43Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T19:23:43Z | - |
| Data de envio: dc.date.issued | 2025-04-29 | - |
| Data de envio: dc.date.issued | 2023-09-01 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.3390/ani13182874 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/308620 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/308620 | - |
| Descrição: dc.description | This research paper introduces a novel methodology for classifying jaw movements in dairy cattle into four distinct categories: bites, exclusive chews, chew-bite combinations, and exclusive sorting, under conditions of tall and short particle sizes in wheat straw and Alfalfa hay feeding. Sound signals were recorded and transformed into images using a short-time Fourier transform. A total of 31 texture features were extracted using the gray level co-occurrence matrix, spatial gray level dependence method, gray level run length method, and gray level difference method. Genetic Algorithm (GA) was applied to the data to select the most important features. Six distinct classifiers were employed to classify the jaw movements. The total precision found was 91.62%, 94.48%, 95.9%, 92.8%, 94.18%, and 89.62% for Naive Bayes, k-nearest neighbor, support vector machine, decision tree, multi-layer perceptron, and k-means clustering, respectively. The results of this study provide valuable insights into the nutritional behavior and dietary patterns of dairy cattle. The understanding of how cows consume different types of feed and the identification of any potential health issues or deficiencies in their diets are enhanced by the accurate classification of jaw movements. This information can be used to improve feeding practices, reduce waste, and ensure the well-being and productivity of the cows. The methodology introduced in this study can serve as a valuable tool for livestock managers to evaluate the nutrition of their dairy cattle and make informed decisions about their feeding practices. | - |
| Descrição: dc.description | Gorgan University of Agricultural Sciences and Natural Resources | - |
| Descrição: dc.description | Department of Mechanics of Biosystems Engineering Faculty of Agricultural Engineering and Rural Development Agricultural Sciences and Natural Resources University of Khuzestan | - |
| Descrição: dc.description | Department of Animal Sciences Faculty of Animal Sciences and Food Technology Agricultural Sciences and Natural Resources University of Khuzestan | - |
| Descrição: dc.description | Department of Management Development and Technology School of Science and Engineering Sao Paulo State University, SP | - |
| Descrição: dc.description | Graduate Program in Production Engineering Paulista University—UNIP, SP | - |
| Descrição: dc.description | Department of Management Development and Technology School of Science and Engineering Sao Paulo State University, SP | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | Animals | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | dairy farming industry | - |
| Palavras-chave: dc.subject | genetic algorithm | - |
| Palavras-chave: dc.subject | machine learning | - |
| Palavras-chave: dc.subject | rumination patterns | - |
| Palavras-chave: dc.subject | sound signals analysis | - |
| Palavras-chave: dc.subject | textural features | - |
| Título: dc.title | Classifying Chewing and Rumination in Dairy Cows Using Sound Signals and Machine Learning | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: