PsyBERTpt: A Clinical Entity Recognition Model for Psychiatric Narratives

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorHAILab-
Autor(es): dc.contributorPsychiatry and Medical Psychology-
Autor(es): dc.creatorNiero, Luiz Henrique Pereira-
Autor(es): dc.creatorGuilherme, Ivan Rizzo-
Autor(es): dc.creatorOliveira, Lucas Emanuel Silva E-
Autor(es): dc.creatorDe Araujo Filho, Gerardo Maria-
Data de aceite: dc.date.accessioned2025-08-21T18:16:16Z-
Data de disponibilização: dc.date.available2025-08-21T18:16:16Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2022-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/CBMS58004.2023.00298-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/308602-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/308602-
Descrição: dc.descriptionMental disorders are among the most complex disorders to treat due to the scarcity of biomarkers that identify and quantify the severity of the disease, as is commonly available in other areas of medicine. The practice of psychiatry uses semi-structured and unstructured data to record the mental and behavioral states of patients, which are impressions of the physician about the patient, and therefore important information for prognosis. Most of this data lacks standardization, making it difficult to use for quantitative analysis through computational tools since clinical decision models are based on structured data. In this work, a team of psychiatrists and computer scientists developed a methodology based on Natural Language Processing to extract relevant information from admission clinical notes of a psychiatric emergency service. With the use of BERT, we developed psyBERTpt, a prediction model capable of extracting multiple types of information considered relevant to psychiatric practice.-
Descrição: dc.descriptionSão Paulo State University (UNESP) Dept of Statistics Applied Mathematics and Computing-
Descrição: dc.descriptionPolytechnic School Pontifical Catholic University of Paraná (PUC-PR) HAILab-
Descrição: dc.descriptionFaculty of Medicine of São José Do Rio Preto (FAMERP) Dept of Neurological Sciences Psychiatry and Medical Psychology-
Descrição: dc.descriptionSão Paulo State University (UNESP) Dept of Statistics Applied Mathematics and Computing-
Formato: dc.format672-677-
Idioma: dc.languageen-
Relação: dc.relationProceedings - IEEE Symposium on Computer-Based Medical Systems-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectClinical Entity Recognition-
Palavras-chave: dc.subjectClinical Narratives-
Palavras-chave: dc.subjectPsychiatry-
Título: dc.titlePsyBERTpt: A Clinical Entity Recognition Model for Psychiatric Narratives-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.