Delving into the Porosity Domain Continuum in Hardwood Growth Rings: What Can We Learn from Computer Vision Wood Identification Models?

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorForest Products Laboratory-
Autor(es): dc.contributorUniversity of Wisconsin-
Autor(es): dc.contributorMississippi State University-
Autor(es): dc.contributorPurdue University-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorWiedenhoeft, Alex C.-
Autor(es): dc.creatorRavindran, Prabu-
Autor(es): dc.creatorCosta, Adriana-
Autor(es): dc.creatorShmulsky, Rubin-
Autor(es): dc.creatorOwens, Frank C.-
Data de aceite: dc.date.accessioned2025-08-21T17:25:08Z-
Data de disponibilização: dc.date.available2025-08-21T17:25:08Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-05-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.15376/biores.20.2.3002-3023-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/308334-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/308334-
Descrição: dc.descriptionHardwood porosity domains (diffuse-, semi-ring-, and ring-porosity) exist along a spectrum with some taxa embodying only one porosity domain and others spanning more than one. A cascading model scheme involving a root-level porosity classifier and second-level taxonomical classifiers might be useful for mitigating reductions in the predictive accuracy of North American computer vision wood identification (CVWID) models when the number of classes increases. Thus far, the porosity classifier has been trained on images covering the breadth of the porosity spectrum. By reducing ambiguity near the boundaries of porosity domains, training the root classifier only on taxa that are quintessentially diffuse-, semi-ring, and ring-porous might produce equivalent or better results. In this study, a two-class (diffuse-and ring-porous) model and a three-class (diffuse-, semi-ring-, and ring-porous) model were trained on specimens only from taxa with quintessentially idealized porosity and tested on specimens with and without idealized porosity. Results showed perfect predictive accuracy for both models when tested on in-model taxa but showed lower accuracy on datasets with non-ideal porosity with all misclassifications being anatomically sensible. In addition, the results showed remarkable similarities between CVWID models and humans in how they “apply” the concept of discrete porosity domains to a real-world continuum.-
Descrição: dc.descriptionNational Institute of Food and Agriculture-
Descrição: dc.descriptionU.S. Department of Agriculture-
Descrição: dc.descriptionCenter for Wood Anatomy Research USDA Forest Service Forest Products Laboratory-
Descrição: dc.descriptionDepartment of Botany University of Wisconsin-
Descrição: dc.descriptionDepartment of Sustainable Bioproducts Mississippi State University-
Descrição: dc.descriptionDepartment of Forestry and Natural Resources Purdue University-
Descrição: dc.descriptionDepartamento de Ciências Biológicas (Botânica) Universidade Estadual Paulista, São Paulo-
Descrição: dc.descriptionDepartamento de Ciências Biológicas (Botânica) Universidade Estadual Paulista, São Paulo-
Descrição: dc.descriptionU.S. Department of Agriculture: 7004014-
Formato: dc.format3002-3023-
Idioma: dc.languageen-
Relação: dc.relationBioResources-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectComputer vision-
Palavras-chave: dc.subjectDeep learning-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectPorosity domain-
Palavras-chave: dc.subjectWood identification-
Palavras-chave: dc.subjectXyloTron-
Título: dc.titleDelving into the Porosity Domain Continuum in Hardwood Growth Rings: What Can We Learn from Computer Vision Wood Identification Models?-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.