Comparing Video Analysis to Computerized Detection of Limb Position for the Diagnosis of Movement Control during Back Squat Exercise with Overload

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCiência e Tecnologia de São Paulo (IFSP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorFederal University of Alfenas (UNIFAL)-
Autor(es): dc.contributorEscola Superior de Educação-
Autor(es): dc.contributorSport Physical Activity and Health Research & INnovation CenTer (SPRINT)-
Autor(es): dc.contributorUniversidade de Lisboa-
Autor(es): dc.contributorUniversidade de Évora-
Autor(es): dc.contributorLife Quality Research Centre (CIEQV-Leiria)-
Autor(es): dc.contributorUniversity of Extremadura-
Autor(es): dc.contributorUniversidad Francisco de Vitoria-
Autor(es): dc.contributorUniversidad a Distancia de Madrid-
Autor(es): dc.creatorPeres, André B.-
Autor(es): dc.creatorSancassani, Andrei-
Autor(es): dc.creatorCastro, Eliane A.-
Autor(es): dc.creatorAlmeida, Tiago A. F.-
Autor(es): dc.creatorMassini, Danilo A.-
Autor(es): dc.creatorMacedo, Anderson G.-
Autor(es): dc.creatorEspada, Mário C.-
Autor(es): dc.creatorHernández-Beltrán, Víctor-
Autor(es): dc.creatorGamonales, José M.-
Autor(es): dc.creatorPessôa Filho, Dalton M.-
Data de aceite: dc.date.accessioned2025-08-21T20:37:44Z-
Data de disponibilização: dc.date.available2025-08-21T20:37:44Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-03-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/s24061910-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307457-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307457-
Descrição: dc.descriptionIncorrect limb position while lifting heavy weights might compromise athlete success during weightlifting performance, similar to the way that it increases the risk of muscle injuries during resistance exercises, regardless of the individual’s level of experience. However, practitioners might not have the necessary background knowledge for self-supervision of limb position and adjustment of the lifting position when improper movement occurs. Therefore, the computerized analysis of movement patterns might assist people in detecting changes in limb position during exercises with different loads or enhance the analysis of an observer with expertise in weightlifting exercises. In this study, hidden Markov models (HMMs) were employed to automate the detection of joint position and barbell trajectory during back squat exercises. Ten volunteers performed three lift movements each with a 0, 50, and 75% load based on body weight. A smartphone was used to record the movements in the sagittal plane, providing information for the analysis of variance and identifying significant position changes by video analysis (p < 0.05). Data from individuals performing the same movements with no added weight load were used to train the HMMs to identify changes in the pattern. A comparison of HMMs and human experts revealed between 40% and 90% agreement, indicating the reliability of HMMs for identifying changes in the control of movements with added weight load. In addition, the results highlighted that HMMs can detect changes imperceptible to the human visual analysis.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionInstituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP), SP-
Descrição: dc.descriptionGraduate Programme in Human Development and Technologies São Paulo State University (UNESP), SP-
Descrição: dc.descriptionDepartment of Physical Education School of Sciences (FC) São Paulo State University (UNESP), SP-
Descrição: dc.descriptionPos-Graduation Program in Rehabilitation Sciences Institute of Motricity Sciences Federal University of Alfenas (UNIFAL), MG-
Descrição: dc.descriptionInstituto Politécnico de Setúbal Escola Superior de Educação-
Descrição: dc.descriptionSport Physical Activity and Health Research & INnovation CenTer (SPRINT)-
Descrição: dc.descriptionCentre for the Study of Human Performance (CIPER) Faculdade de Motricidade Humana Universidade de Lisboa-
Descrição: dc.descriptionComprehensive Health Research Centre (CHRC) Universidade de Évora-
Descrição: dc.descriptionLife Quality Research Centre (CIEQV-Leiria)-
Descrição: dc.descriptionTraining Optimization and Sports Performance Research Group (GOERD) Faculty of Sport Science University of Extremadura-
Descrição: dc.descriptionFacultad Ciencias de la Salud Universidad Francisco de Vitoria-
Descrição: dc.descriptionPrograma de Doctorado en Educación y Tecnología Universidad a Distancia de Madrid-
Descrição: dc.descriptionGraduate Programme in Human Development and Technologies São Paulo State University (UNESP), SP-
Descrição: dc.descriptionDepartment of Physical Education School of Sciences (FC) São Paulo State University (UNESP), SP-
Descrição: dc.descriptionCAPES: 001-
Descrição: dc.descriptionCAPES: 88887.310463/2018-00-
Descrição: dc.descriptionCAPES: 88887.310796/2018-00-
Descrição: dc.descriptionCAPES: 88887.572557/2020-00-
Descrição: dc.descriptionCAPES: 88887.580265/2020-00-
Idioma: dc.languageen-
Relação: dc.relationSensors-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectcomputer modelling-
Palavras-chave: dc.subjectmotor activity-
Palavras-chave: dc.subjectpattern recognition-
Palavras-chave: dc.subjectstrength training-
Título: dc.titleComparing Video Analysis to Computerized Detection of Limb Position for the Diagnosis of Movement Control during Back Squat Exercise with Overload-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.