Modeling hormesis using multivariate nonlinear regression in plant biology: A comprehensive approach to understanding dose-response relationships

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorGlobal Biological Data Analytics-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorJardim Amorim, Deoclecio-
Autor(es): dc.creatorCorrêa Vieira, Afrânio Márcio-
Autor(es): dc.creatorFidelis, Cleanderson Romualdo-
Autor(es): dc.creatorCamilo dos Santos, Jania Claudia-
Autor(es): dc.creatorde Almeida Silva, Marcelo-
Autor(es): dc.creatorGarcia Borges Demétrio, Clarice-
Data de aceite: dc.date.accessioned2025-08-21T20:13:53Z-
Data de disponibilização: dc.date.available2025-08-21T20:13:53Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-19-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.scitotenv.2023.167041-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307432-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307432-
Descrição: dc.descriptionFor over a century, ecotoxicological studies have reported the occurrence of hormesis as a significant phenomenon in many areas of science. In plant biology, hormesis research focuses on measuring morphological, physiological, biochemical, and productivity changes in plants exposed to low doses of herbicides. These studies involve multiple features that are often correlated. However, the multivariate aspect and interdependencies among components of a plant system are not considered in the adopted modeling framework. Therefore, a multivariate nonlinear modeling approach for hormesis is proposed, where information regarding correlations among response variables is taken into account through a variance-covariance matrix obtained from univariate residuals. The proposed methodology is evaluated through a Monte Carlo simulation study and an application to experimental data from safflower (Carthamus tinctorius L.) cultivation. In the simulation study, the multivariate model outperformed the univariate models, exhibiting higher precision, lower bias, and greater accuracy in parameter estimation. These results were also confirmed in the analysis of the experimental data. Using the delta method, mean doses of interest can be derived along with their associated standard errors. This is the first study to address hormesis in a multivariate context, allowing for a better understanding of the biphasic dose-response relationships by considering the interrelationships among various measured characteristics in the plant system, leading to more precise parameter estimates.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionUniversidade de Sao Paulo ESALQ Departamento de Ciências Exatas-
Descrição: dc.descriptionSyngenta Crop Protection AG Global Biological Data Analytics-
Descrição: dc.descriptionSchool of Agricultural Sciences Laboratory of Ecophysiology Applied to Agriculture Department of Crop Production São Paulo State University (UNESP)-
Descrição: dc.descriptionSchool of Agricultural Sciences Laboratory of Ecophysiology Applied to Agriculture Department of Crop Production São Paulo State University (UNESP)-
Descrição: dc.descriptionCNPq: 307457/2022-2-
Idioma: dc.languageen-
Relação: dc.relationScience of the Total Environment-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCarthamus tinctorius L.-
Palavras-chave: dc.subjectDose-response curve-
Palavras-chave: dc.subjectHerbicides-
Palavras-chave: dc.subjectMultivariate analysis-
Palavras-chave: dc.subjectNonlinear models-
Palavras-chave: dc.subjectPlant biology-
Título: dc.titleModeling hormesis using multivariate nonlinear regression in plant biology: A comprehensive approach to understanding dose-response relationships-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.