Integrating autoencoders to improve fault classification with PV system insertion

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidad Mariana-
Autor(es): dc.creatorSilva Santos, Andréia-
Autor(es): dc.creatorda Silva, Reginaldo José-
Autor(es): dc.creatorMontenegro, Paula Andrea-
Autor(es): dc.creatorFaria, Lucas Teles-
Autor(es): dc.creatorLopes, Mara Lúcia Martins-
Autor(es): dc.creatorMinussi, Carlos Roberto-
Data de aceite: dc.date.accessioned2025-08-21T20:46:26Z-
Data de disponibilização: dc.date.available2025-08-21T20:46:26Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-05-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2025.111426-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307384-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307384-
Descrição: dc.descriptionThe extensive integration of distributed generation (DG) units leads to significant changes in the operation of power distribution systems (PDS). Integrating DG units contributes to meeting the growing energy demand, diversifying the energy matrix, and reducing power grid losses. In contrast, they can affect conventional protection systems in power grids by altering current flow, which affects the characteristics, direction, and amplitude of short-circuit currents. Consequently, improper operation of protection equipment can cause false positives, negatively affecting the detection, classification, and reliability of the power grid. This study addresses fault classification in PDS, considering the extensive integration of DG units, specifically PV systems. PDS is evaluated at various levels of PV insertion using different fault scenarios modeled in the IEEE 34-bus test system. This includes five scenarios with variations in the PV system insertion. Autoencoders are applied during the pre-processing phase, while eleven different algorithms are used in the classification stage to identify fault types. They can improve the performance of the classification system by reducing the size of input signals and extracting the most relevant features. The results reveal that the K-nearest neighbor (KNN) and random forest (RF) algorithms demonstrate the best performance, maintaining a minimum accuracy of 95.42% in all scenarios.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionLaboratory of Intelligent Systems Department of Electrical Engineering School of Engineering São Paulo State University (UNESP), São Paulo-
Descrição: dc.descriptionEnvironmental Engineering Program Universidad Mariana, Nariño-
Descrição: dc.descriptionDepartment of Engineering School of Engineering and Sciences São Paulo State University (UNESP), São Paulo-
Descrição: dc.descriptionLaboratory of Intelligent Systems Department of Electrical Engineering School of Engineering São Paulo State University (UNESP), São Paulo-
Descrição: dc.descriptionDepartment of Engineering School of Engineering and Sciences São Paulo State University (UNESP), São Paulo-
Descrição: dc.descriptionCNPq: 302896/2022-8-
Descrição: dc.descriptionCAPES: UNESP/PROPG 37/2023-
Idioma: dc.languageen-
Relação: dc.relationElectric Power Systems Research-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectArtificial neural networks-
Palavras-chave: dc.subjectAutoencoders-
Palavras-chave: dc.subjectFault classification-
Palavras-chave: dc.subjectPhotovoltaic systems-
Palavras-chave: dc.subjectPower distribution systems-
Título: dc.titleIntegrating autoencoders to improve fault classification with PV system insertion-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.