Microwave-assisted hydrothermal synthesis and gas sensing properties of ZnSn(OH)6, ZnSnO3, and Zn2SnO4/SnO2 hierarchical nano-/hetero-structures

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversity of Surrey-
Autor(es): dc.creatorMasteghin, Mateus G.-
Autor(es): dc.creatorSilva, Ranilson A.-
Autor(es): dc.creatorOrlandi, Marcelo O.-
Data de aceite: dc.date.accessioned2025-08-21T18:54:46Z-
Data de disponibilização: dc.date.available2025-08-21T18:54:46Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-08-16-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.sna.2024.115386-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307355-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307355-
Descrição: dc.descriptionAlthough semiconducting metal oxide sensors present reasonable sensitivity, an improved lower detection limit and/or selectivity would allow broadening real-time monitoring applications. This work reports the growth mechanism and gas sensing performance of zinc tin oxide-based structures synthesised via a microwave-assisted hydrothermal route. The synthesised materials were characterised by X-ray diffraction (XRD), Raman and Fourier-transform infrared (FTIR) spectroscopy, scanning and scanning transmission electron microscopy (SEM and STEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nitrogen adsorption/desorption experiments. Gas sensor measurements showed that ZnSnO3 presents an outstanding lower detection limit to nitrogen dioxide (NO2), in which a 10-fold increase in electrical resistance is expected in the presence of 1 ppb NO2 at an operating temperature of 150 ˚C. Moreover, the Zn2SnO4/SnO2 heterostructure exhibited superior selectivity to NO2 relative to hydrogen (H2) and carbon monoxide (CO), exhibiting a sensor response ∼1500 times higher for the oxidising gas. Hence, it is demonstrated that nanostructures’ growth engineering can realise lower detection limits and ultra-selective high-performance gas sensor devices through a greater surface area and enhanced contact potential barriers.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartment of Engineering Physics and Mathematics São Paulo State University (UNESP)-
Descrição: dc.descriptionAdvanced Technology Institute University of Surrey-
Descrição: dc.descriptionDepartment of Engineering Physics and Mathematics São Paulo State University (UNESP)-
Descrição: dc.descriptionFAPESP: #2015/21033–0-
Descrição: dc.descriptionFAPESP: #2017/26219-0-
Descrição: dc.descriptionCNPq: #426490/2018-5-
Descrição: dc.descriptionCNPq: #443138/2016–8-
Idioma: dc.languageen-
Relação: dc.relationSensors and Actuators A: Physical-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectHydrothermal synthesis-
Palavras-chave: dc.subjectMetal oxide gas sensor-
Palavras-chave: dc.subjectNitrogen dioxide sensing-
Palavras-chave: dc.subjectTin oxide-
Palavras-chave: dc.subjectZinc tin hydroxide-
Palavras-chave: dc.subjectZinc tin oxide-
Título: dc.titleMicrowave-assisted hydrothermal synthesis and gas sensing properties of ZnSn(OH)6, ZnSnO3, and Zn2SnO4/SnO2 hierarchical nano-/hetero-structures-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.