Application of a Genetic Algorithm for Optimising the Location of Electric Vehicle Charging Stations

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Trás-os-Montes and Alto Douro-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorINESC TEC-
Autor(es): dc.creatorPinto, João-
Autor(es): dc.creatorMejia, Mario A.-
Autor(es): dc.creatorMacedo, Leonardo H.-
Autor(es): dc.creatorFilipe, Vítor-
Autor(es): dc.creatorPinto, Tiago-
Data de aceite: dc.date.accessioned2025-08-21T21:15:53Z-
Data de disponibilização: dc.date.available2025-08-21T21:15:53Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/978-3-031-73500-4_13-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307277-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307277-
Descrição: dc.descriptionThe number of electric vehicles has been increasing significantly due to various factors, such as the higher prices of fossil fuels, concerns about the increasing pollution, and the resulting incentive to use energy from renewable sources. There are currently a few charging facilities, which are still quite scattered, and several are still experimental, requiring appropriate planning of this infrastructure in order to support the growing number of electric vehicles adequately. Thus, optimising the location of charging stations becomes a critical issue, which can be achieved through the application of mathematical models and data analysis tools. An example is genetic algorithms, which have demonstrated their versatility in solving complex optimisation problems, especially those involving multiple variables. This work presents a proposal for a more comprehensive genetic algorithm model that encompasses all variables from the perspectives of all entities involved. Its experimentation was conducted using real data, with the aim of finding the best combination of locations, minimising the total number of stations and maximising the coverage of the area under study. Thus, it is essential to carefully consider user preferences, accessibility, energy demand, and existing electrical infrastructure to ensure an effective and sustainable installation. The findings highlight the crucial role of these computing tools in addressing complex problems from various viewpoints, leading to solutions that cater to the needs of all parties involved. While not necessarily perfect, these solutions represent a balanced compromise across multiple dimensions of the problem.-
Descrição: dc.descriptionUniversity of Trás-os-Montes and Alto Douro-
Descrição: dc.descriptionSão Paulo State University-
Descrição: dc.descriptionINESC TEC-
Descrição: dc.descriptionSão Paulo State University-
Formato: dc.format148-159-
Idioma: dc.languageen-
Relação: dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCharging Stations-
Palavras-chave: dc.subjectElectric Vehicles-
Palavras-chave: dc.subjectGenetic Algorithm-
Palavras-chave: dc.subjectOptimisation-
Título: dc.titleApplication of a Genetic Algorithm for Optimising the Location of Electric Vehicle Charging Stations-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.