Maximizing surface reactivity: The impact of electrochemical oxidation as a polydopamine modification step

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorUchôa Teixeira, Jean Valdir-
Autor(es): dc.creatorGonçalves Dias, Leonardo Francisco-
Autor(es): dc.creatorBrizuela Guerra, Nayrim-
Autor(es): dc.creatorRibeiro Capelin, Guilherme-
Autor(es): dc.creatorRoberto Mastelaro, Valmor-
Autor(es): dc.creatorNoronha Lisboa-Filho, Paulo-
Data de aceite: dc.date.accessioned2025-08-21T20:45:35Z-
Data de disponibilização: dc.date.available2025-08-21T20:45:35Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-02-04-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.colsurfa.2024.135744-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307108-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307108-
Descrição: dc.descriptionMelanin-based materials are highly versatile and widely utilized across various industries, thanks to their customizable surface properties and excellent biocompatibility. Dopamine, a well-studied precursor, has the remarkable ability to self-oxidize and form melanin-like compounds. This molecule can be tailored using cations during the oxidation process or via the chelation of hydroxyl groups in the final material. In order to explore the adaptability of dopamine-based melanin materials, our research focuses on producing particles using an innovative double-step process. The first oxidation is catalyzed by Y3+ in an electrochemical process, followed by further cyclization in a basic medium. We examined the resulting products to gauge the impact of the process on the final molecular arrangement and chelation capacity by utilizing Fe2+ as a cation probe. Surface reactivity was assessed using voltammetry techniques and electrochemical impedance spectroscopy. The results clearly indicate significant improvements in the molecular arrangement, demonstrating that the double-step process delivers higher material stability and superior surface reactivity compared to the conventional alkali self-oxidation method.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionUniversidade Estadual Paulista-
Descrição: dc.descriptionCentro de Desenvolvimento de Materiais Funcionais-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionUNESP - São Paulo State University School of Sciences Materials Science and Technology Program, SP-
Descrição: dc.descriptionUSP Physics Institute of São Carlos – University of São Paulo, SP-
Descrição: dc.descriptionUNESP – São Paulo State University School of Science Department of Physics, SP-
Descrição: dc.descriptionUNESP - São Paulo State University School of Sciences Materials Science and Technology Program, SP-
Descrição: dc.descriptionUNESP – São Paulo State University School of Science Department of Physics, SP-
Descrição: dc.descriptionCentro de Desenvolvimento de Materiais Funcionais: 2013/07296-2-
Descrição: dc.descriptionFAPESP: 2021/09207-3-
Idioma: dc.languageen-
Relação: dc.relationColloids and Surfaces A: Physicochemical and Engineering Aspects-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDopamine-
Palavras-chave: dc.subjectElectrochemical oxidation-
Palavras-chave: dc.subjectMolecular arrangement-
Palavras-chave: dc.subjectSurface reactivity-
Título: dc.titleMaximizing surface reactivity: The impact of electrochemical oxidation as a polydopamine modification step-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.