Graph Convolutional Networks and Particle Competition and Cooperation for Semi-Supervised Learning

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorLeticio, Gustavo Rosseto-
Autor(es): dc.creatorDos Santos, Matheus Henrique Jacob-
Autor(es): dc.creatorValem, Lucas Pascotti-
Autor(es): dc.creatorKawai, Vinicius Atsushi Sato-
Autor(es): dc.creatorBreve, Fabricio Aparecido-
Autor(es): dc.creatorPedronette, Daniel Carlos Guimarães-
Data de aceite: dc.date.accessioned2025-08-21T17:00:43Z-
Data de disponibilização: dc.date.available2025-08-21T17:00:43Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.5220/0013267000003912-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/307030-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/307030-
Descrição: dc.descriptionGiven the substantial challenges associated with obtaining labeled data, including high costs, time consumption, and the frequent need for expert involvement, semi-supervised learning has garnered increased attention. In these scenarios, Graph Convolutional Networks (GCNs) offer an attractive and promising solution, as they can effectively leverage labeled and unlabeled data for classification. Through their ability to capture complex relationships within data, GCNs provide a powerful framework for tasks that rely on limited labeled information. There are also other promising approaches that exploit the graph structure for more effective learning, such as the Particle Competition and Cooperation (PCC), an algorithm that models label propagation through particles that compete and cooperate on a graph constructed from the data, exploiting similarity relationships between instances. In this work, we propose a novel approach that combines PCC, GCN, and dimensionality reduction approaches for improved classification performance. The experimental results showed that our method provided gains in most cases.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartment of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP)-
Descrição: dc.descriptionDepartment of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP)-
Descrição: dc.descriptionFAPESP: #2018/15597-6-
Descrição: dc.descriptionCNPq: #313193/2023-1-
Descrição: dc.descriptionCNPq: #422667/2021-8-
Descrição: dc.descriptionCNPq: 2023/00095-3-
Formato: dc.format519-526-
Idioma: dc.languageen-
Relação: dc.relationProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectGraph Convolutional Networks-
Palavras-chave: dc.subjectParticle Competition and Cooperation-
Palavras-chave: dc.subjectSemi-Supervised Learning-
Título: dc.titleGraph Convolutional Networks and Particle Competition and Cooperation for Semi-Supervised Learning-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.