
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Universidade Federal de Uberlândia (UFU) | - |
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.contributor | Universidade de São Paulo (USP) | - |
| Autor(es): dc.contributor | Federal Institute of Triângulo Mineiro | - |
| Autor(es): dc.contributor | University of Bologna | - |
| Autor(es): dc.creator | Silva, Adriano B. | - |
| Autor(es): dc.creator | Rozendo, Guilherme B. | - |
| Autor(es): dc.creator | Tosta, Thaina A. A. | - |
| Autor(es): dc.creator | Martins, Alessandro S. | - |
| Autor(es): dc.creator | Loyola, Adriano M. | - |
| Autor(es): dc.creator | Cardoso, Sergio V. | - |
| Autor(es): dc.creator | Lumini, Alessandra | - |
| Autor(es): dc.creator | Neves, Leandro A. | - |
| Autor(es): dc.creator | De Faria, Paulo R. | - |
| Autor(es): dc.creator | Nascimento, Marcelo Z. Do | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T16:45:46Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T16:45:46Z | - |
| Data de envio: dc.date.issued | 2025-04-29 | - |
| Data de envio: dc.date.issued | 2022-12-31 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.1109/CBMS58004.2023.00286 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/305641 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/305641 | - |
| Descrição: dc.description | Early diagnosis of potentially malignant disorders, such as oral epithelial dysplasia (OED), is the most reliable way to prevent oral cancer. Computational algorithms have been used as a tool to aid specialists in this process. In recent years, CNN-based methods have gained more attention due to their improved results in nuclei segmentation tasks. Despite these relevant results, achieving high segmentation accuracy remains a challenging task. In this paper, we propose an ensemble of segmentation models to improve the performance of nuclei segmentation in OED histopathology images. The proposed ensemble consists of four CNN segmentation models, which were combined using three ensemble strategies: simple averaging, weighted averaging and majority voting, achieved accuracy of 90.69%, 90.70% and 88.49%, respectively, when applied to OED images. The model's performance was also evaluated on three publicly available datasets and achieved comparable performance to state-of-the-art segmentation methods. These values indicate that the proposed ensemble methods can be used in medical image analysis applications. | - |
| Descrição: dc.description | Federal University of Uberlândia Faculty of Computer Science | - |
| Descrição: dc.description | São Paulo State University Department of Computer Science and Statistics (DCCE) | - |
| Descrição: dc.description | Science and Technology Institute Federal University of São Paulo | - |
| Descrição: dc.description | Federal Institute of Triângulo Mineiro | - |
| Descrição: dc.description | School of Dentistry Federal University of Uberlândia Area of Oral Pathology | - |
| Descrição: dc.description | University of Bologna Department of Computer Science and Engineering (DISI) | - |
| Descrição: dc.description | Institute of Biomedical Science Federal University of Uberlândia Department of Histology and Morphology | - |
| Descrição: dc.description | São Paulo State University Department of Computer Science and Statistics (DCCE) | - |
| Formato: dc.format | 601-604 | - |
| Idioma: dc.language | en | - |
| Relação: dc.relation | Proceedings - IEEE Symposium on Computer-Based Medical Systems | - |
| ???dc.source???: dc.source | Scopus | - |
| Palavras-chave: dc.subject | CNN Ensemble | - |
| Palavras-chave: dc.subject | Histological Image Processing | - |
| Palavras-chave: dc.subject | Nuclei Segmentation | - |
| Palavras-chave: dc.subject | Oral Epihtelial Dysplasia | - |
| Título: dc.title | CNN Ensembles for Nuclei Segmentation on Histological Images of OED | - |
| Tipo de arquivo: dc.type | aula digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: