Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Universidade Federal Rural da Amazônia (UFRA) | - |
Autor(es): dc.creator | Vieira, Igor Cristian Oliveira | - |
Autor(es): dc.creator | de Moraes, José Reinaldo da Silva Cabral | - |
Autor(es): dc.creator | Santos, Valter Barbosa Dos | - |
Autor(es): dc.creator | Costa, Deborah Luciany Pires | - |
Autor(es): dc.creator | de Faria, Rogério Teixeira | - |
Autor(es): dc.creator | de Souza, Paulo Jorge de Oliveira Ponte | - |
Autor(es): dc.creator | Rolim, Glauco de Souza | - |
Data de aceite: dc.date.accessioned | 2025-08-21T16:35:40Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T16:35:40Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-05-07 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.26848/rbgf.v17.3.p1434-1456 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/305507 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/305507 | - |
Descrição: dc.description | Predicting climate conditions helps in decision-making due to its great influence on crops, enabling more efficient production strategies and reducing damage, especially in the most critical phases of corn cultivation that determine its productive potential. A multiple linear regression model (RLM) was developed to forecast meteorological elements at least 2 months in advance for 15 locations that are prominent in corn production in Brazil. A set of daily data on average, minimum and maximum air temperature, wind speed, relative humidity and global radiation provided by the NASA/POWER system and precipitation data obtained from the National Water Agency (2003 to 2019) was used, organized into decennials (DEC) depending on the average corn cycle and grouped into two types of climate (Am and Aw). Forecasts using 14 DEC in both climate types showed, on average, high accuracy for all elements. The results indicated that the MLR has high accuracy in predicting these variables, especially in estimating wind speed. For the more volatile elements, such as precipitation, the model was still able to maintain acceptable reliability despite the complexities inherent in its prediction. In addition, the performance of the Camargo model to calculate the water balance was highlighted. This model required less input data to calculate water storage in the soil, which is decisive for planning corn cultivation, being an effective tool for predicting climatic elements on a ten-day scale. | - |
Descrição: dc.description | Programa de Pós-Graduação Stricto Sensu de Ciência do Solo Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) | - |
Descrição: dc.description | Programa de Pós-Graduação Stricto Sensu de Produção Vegetal Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) | - |
Descrição: dc.description | Programa de Pós-Graduação Stricto Sensu em Agronomia Universidade Federal Rural da Amazônia (UFRA) | - |
Descrição: dc.description | Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) | - |
Descrição: dc.description | Universidade Federal Rural da Amazônia (UFRA) | - |
Descrição: dc.description | Programa de Pós-Graduação Stricto Sensu de Ciência do Solo Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) | - |
Descrição: dc.description | Programa de Pós-Graduação Stricto Sensu de Produção Vegetal Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) | - |
Descrição: dc.description | Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp) | - |
Formato: dc.format | 1434-1456 | - |
Idioma: dc.language | pt_BR | - |
Relação: dc.relation | Revista Brasileira de Geografia Fisica | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Agrometeorology, machine learning | - |
Palavras-chave: dc.subject | predictive models | - |
Palavras-chave: dc.subject | weather forecast | - |
Título: dc.title | Multiple linear regression to forecast decendial weather for agricultural purposes | - |
Título: dc.title | Modelo de previsão meteorológica decendial para fins agrícolas utilizando regressão linear múltipla | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: