Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Universidade de São Paulo (USP) | - |
Autor(es): dc.creator | Samuel Jodas, Danilo | - |
Autor(es): dc.creator | Del Nero Velasco, Giuliana | - |
Autor(es): dc.creator | Araujo de Lima, Reinaldo | - |
Autor(es): dc.creator | Ribeiro Machado, Aline | - |
Autor(es): dc.creator | Paulo Papa, João | - |
Data de aceite: dc.date.accessioned | 2025-08-21T18:04:22Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T18:04:22Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2022-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.5220/0011604600003417 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/305468 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/305468 | - |
Descrição: dc.description | Urban tree monitoring yields significant benefits to the environment and human society. Several aspects are essential to ensure the good condition of the trees and eventually predict their mortality or the risk of falling. So far, the most common strategy relies on the tree’s physical measures acquired from fieldwork analysis, which includes its height, diameter of the trunk, and metrics from the crown for a first glance condition analysis. The canopy of the tree is essential for predicting the resistance to extreme climatic conditions. However, the manual process is laborious considering the massive number of trees in the urban environment. Therefore, computer-aided methods are desirable to provide forestry managers with a rapid estimation of the tree foliage covering. This paper proposes a deep learning semantic segmentation strategy to detect the tree crown foliage in images acquired from the street-view perspective. The proposed approach employs several improvements to the well-known U-Net architecture in order to increase the prediction accuracy and reduce the network size. Compared to several vegetation indices found in the literature, the proposed model achieved competitive results considering the overlapping with the reference annotations. | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
Descrição: dc.description | Department of Computing São Paulo State University | - |
Descrição: dc.description | Institute For Technological Research University of São Paulo | - |
Descrição: dc.description | Department of Computing São Paulo State University | - |
Descrição: dc.description | FAPESP: #2013/07375-0 | - |
Descrição: dc.description | FAPESP: #2014/12236-1 | - |
Descrição: dc.description | FAPESP: #2019/07665-4 | - |
Descrição: dc.description | FAPESP: #2019/18287-0 | - |
Descrição: dc.description | CNPq: 308529/2021-9 | - |
Formato: dc.format | 143-150 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Image Processing | - |
Palavras-chave: dc.subject | Machine Learning | - |
Palavras-chave: dc.subject | Tree Crown Segmentation | - |
Palavras-chave: dc.subject | Tree Surveillance | - |
Palavras-chave: dc.subject | Urban Forest | - |
Título: dc.title | Deep Learning Semantic Segmentation Models for Detecting the Tree Crown Foliage | - |
Tipo de arquivo: dc.type | aula digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: