HUMAP: Hierarchical Uniform Manifold Approximation and Projection

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorEindhoven University of Technology (TU/e)-
Autor(es): dc.contributorLinnaeus University-
Autor(es): dc.creatorMarcilio-Jr, Wilson E.-
Autor(es): dc.creatorEler, Danilo M.-
Autor(es): dc.creatorPaulovich, Fernando V.-
Autor(es): dc.creatorMartins, Rafael M.-
Data de aceite: dc.date.accessioned2025-08-21T21:05:54Z-
Data de disponibilização: dc.date.available2025-08-21T21:05:54Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/TVCG.2024.3471181-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/305357-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/305357-
Descrição: dc.descriptionDimensionality reduction (DR) techniques help analysts to understand patterns in high-dimensional spaces. These techniques, often represented by scatter plots, are employed in diverse science domains and facilitate similarity analysis among clusters and data samples. For datasets containing many granularities or when analysis follows the information visualization mantra, hierarchical DR techniques are the most suitable approach since they present major structures beforehand and details on demand. This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures and preserve the mental map throughout hierarchical exploration. We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling.-
Descrição: dc.descriptionSão Paulo State University-
Descrição: dc.descriptionEindhoven University of Technology (TU/e)-
Descrição: dc.descriptionLinnaeus University-
Descrição: dc.descriptionSão Paulo State University-
Idioma: dc.languageen-
Relação: dc.relationIEEE Transactions on Visualization and Computer Graphics-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDimensionality Reduction-
Palavras-chave: dc.subjectHierarchical Exploration-
Palavras-chave: dc.subjectManifold Learning-
Título: dc.titleHUMAP: Hierarchical Uniform Manifold Approximation and Projection-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.