Biaxial strain effects on electronic, transport, and thermoelectric properties of SnX2 (X = Se, Te) and Janus SnSeTe 1T-monolayers

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorJorge Basadre Grohmann National University-
Autor(es): dc.contributorFederal University of Pelotas-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorFlores, Efracio Mamani-
Autor(es): dc.creatorRivera, Victor José Ramirez-
Autor(es): dc.creatorSacari, Elisban Juani Sacari-
Autor(es): dc.creatorSambrano, Julio R.-
Autor(es): dc.creatorMoreira, Mario Lucio-
Autor(es): dc.creatorPiotrowski, Maurício Jeomar-
Data de aceite: dc.date.accessioned2025-08-21T15:11:46Z-
Data de disponibilização: dc.date.available2025-08-21T15:11:46Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-06-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.mtcomm.2024.108830-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/305269-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/305269-
Descrição: dc.descriptionBiaxial strain in two-dimensional materials plays a crucial role in degenerating the valence and conduction bands, leading to energy dispersion in the band structure and causing changes in transport properties, such as carrier mobility, Seebeck coefficient, and electrical conductivity. Herein, we investigated the effects of biaxial strain on SnX2 (X = Se, Te) and the Janus SnSeTe 1T-monolayer using density functional theory, deformation potential, and semiclassical Boltzmann transport theory. Our findings reveal that the studied 1T-monolayers exhibit high and directionally isotropic electron mobility. Biaxial tensile strain has the effect of increasing the bandgap, predominantly reducing the effective mass of electrons while increasing that of holes. This results in an enhanced electron mobility along with a simultaneous reduction or increase in the concentration of electron carriers or holes, respectively. Especifically, in the case of the Janus SnSeTe 1T-monolayer, we observed a remarkable 68% increase in electron mobility, reaching a value of 1588 cm2V−1s−1. This increase contributes to higher thermoelectric performance due to elevated electrical conductivity and a simultaneous rise in the Seebeck coefficient when subjected to biaxial strain. Our study underscores that strain engineering is an effective strategy for achieving improved thermoelectric properties, particularly exemplified by the SnSeTe 1T-monolayer, which achieved a maximum value of 2.25 for n-type due the ultralow thermal conductivity of 0.359 Wm−1K−1 as result of strong phonon anharmonicity on acoustical and optical modes.-
Descrição: dc.descriptionDepartment of Physics Jorge Basadre Grohmann National University-
Descrição: dc.descriptionDepartment of Physics Federal University of Pelotas, Rio Grande do Sul-
Descrição: dc.descriptionModeling and Molecular Simulation Group São Paulo State University, São Paulo-
Descrição: dc.descriptionModeling and Molecular Simulation Group São Paulo State University, São Paulo-
Idioma: dc.languageen-
Relação: dc.relationMaterials Today Communications-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBiaxial strain-
Palavras-chave: dc.subjectCarrier mobility-
Palavras-chave: dc.subjectDFT-
Palavras-chave: dc.subjectJanus monolayer-
Palavras-chave: dc.subjectPower factor-
Palavras-chave: dc.subjectThermoelectric material-
Título: dc.titleBiaxial strain effects on electronic, transport, and thermoelectric properties of SnX2 (X = Se, Te) and Janus SnSeTe 1T-monolayers-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.