A New Regression Model Based on an Extended Inverse Gaussian Distribution with Application to Soybean Processing Plants in Brazil

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal de São Paulo (UNIFESP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade Federal de Mato Grosso do Sul (UFMS)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUniversidade de Brasília (UnB)-
Autor(es): dc.contributorUniversidade Federal de Pernambuco (UFPE)-
Autor(es): dc.creatorVasconcelos, Julio Cezar Souza-
Autor(es): dc.creatorDos Santos, Denize P.-
Autor(es): dc.creatorCavallari, Pâmela Rafaela O. B.-
Autor(es): dc.creatorOrtega, Edwin M. M.-
Autor(es): dc.creatorVila, Roberto-
Autor(es): dc.creatorCordeiro, Gauss M.-
Autor(es): dc.creatorBiaggioni, Marco Antônio M.-
Data de aceite: dc.date.accessioned2025-08-21T16:56:43Z-
Data de disponibilização: dc.date.available2025-08-21T16:56:43Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-02-17-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.17713/ajs.v54i2.1976-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/304972-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/304972-
Descrição: dc.descriptionGrain producers in Brazil often depend on third-party services for the transportation, processing and storage of their production, as, for the most part, they do not have silos on their properties. In this context, efficient logistics is essential to optimize processes and increase reliability between customers and service providers. This study focuses on the logistical analysis of truck traffic at two grain processing plants, examining different receiving protocols to evaluate internal vehicle flow during peak production conditions. The data is analyzed using a multiple regression model with two systematic components based on the proposed New Weibull inverse Gaussian distribution. The research is conducted in grain processing and storage units in the southwest region of São Paulo-SP, belonging to an agro-industrial cooperative. The study monitors all stages of soybean receipt during the peak harvest month, in March 2020. The results indicate the dependence of service times on the sector’s logistical variables. This research addresses the pressing need for efficient logistics in the grain industry, especially in soybean processing. By focusing on truck traffic and receiving protocols, the study aims to provide a better understanding to optimize internal logistics processes, thus contributing to improving operational efficiency and customer service in grain processing units.-
Descrição: dc.descriptionUniversidade Federal de São Paulo-
Descrição: dc.descriptionUniversidade Estadual Paulista Júlio de Mesquita Filho-
Descrição: dc.descriptionUniversidade Federal de Mato Grosso do Sul-
Descrição: dc.descriptionUniversidade de São Paulo-
Descrição: dc.descriptionUniversidade de Brasília-
Descrição: dc.descriptionUniversidade Federal de Pernambuco-
Descrição: dc.descriptionUniversidade Estadual Paulista Júlio de Mesquita Filho-
Formato: dc.format101-124-
Idioma: dc.languageen-
Relação: dc.relationAustrian Journal of Statistics-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectmultiple regression model-
Palavras-chave: dc.subjectreception/unloading-
Palavras-chave: dc.subjectservice time-
Palavras-chave: dc.subjectsimulation study-
Palavras-chave: dc.subjectstorage units-
Título: dc.titleA New Regression Model Based on an Extended Inverse Gaussian Distribution with Application to Soybean Processing Plants in Brazil-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.