Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Moreno, Ademir | - |
Autor(es): dc.creator | Guimaraes Pedronette, Daniel Carlos | - |
Data de aceite: dc.date.accessioned | 2025-08-21T16:20:16Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T16:20:16Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2023-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1109/SIBGRAPI62404.2024.10716343 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/304838 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/304838 | - |
Descrição: dc.description | The revolutionary advances in image representation have led to impressive progress in many image understanding-related tasks, primarily supported by Convolutional Neural Networks (CNN) and, more recently, by Transformer models. Despite such advances, assessing the similarity among images for retrieval in unsupervised scenarios remains a challenging task, mostly grounded on traditional pairwise measures, such as the Euclidean distance. The scenario is even more challenging when different visual features are available, requiring the selection and fusion of features without any label information. In this paper, we propose an Unsupervised Dual-Layer Aggregation (UDLA) method, based on contextual similarity approaches for selecting and fusing CNN and Transformer-based visual features trained through transfer learning. In the first layer, the selected features are fused in pairs focused on precision. A sub-set of pairs is selected for a second layer aggregation focused on recall. An experimental evaluation conducted in different public datasets showed the effectiveness of the proposed approach, which achieved results significantly superior to the best-isolated feature and also superior to a recent fusion approach considered as baseline. | - |
Descrição: dc.description | São Paulo State University (UNESP) Department of Statistics Applied Mathematics and Computing | - |
Descrição: dc.description | São Paulo State University (UNESP) Department of Statistics Applied Mathematics and Computing | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Brazilian Symposium of Computer Graphic and Image Processing | - |
???dc.source???: dc.source | Scopus | - |
Título: dc.title | Unsupervised Dual-Layer Aggregation for Feature Fusion on Image Retrieval Tasks | - |
Tipo de arquivo: dc.type | aula digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: