Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Leticio, Gustavo Rosseto | - |
Autor(es): dc.creator | Kawai, Vinicius Atsushi Sato | - |
Autor(es): dc.creator | Valem, Lucas Pascotti | - |
Autor(es): dc.creator | Pedronette, Daniel Carlos Guimarães | - |
Data de aceite: dc.date.accessioned | 2025-08-21T18:11:42Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T18:11:42Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.5220/0013260500003912 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/304766 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/304766 | - |
Descrição: dc.description | The exponential increase in image data has heightened the need for machine learning applications, particularly in image classification across various fields. However, while data volume has surged, the availability of labeled data remains limited due to the costly and time-intensive nature of labeling. Semi-supervised learning offers a promising solution by utilizing both labeled and unlabeled data; it employs a small amount of labeled data to guide learning on a larger unlabeled set, thus reducing the dependency on extensive labeling efforts. Graph Convolutional Networks (GCNs) introduce an effective method by applying convolutions in graph space, allowing information propagation across connected nodes. This technique captures individual node features and inter-node relationships, facilitating the discovery of intricate patterns in graph-structured data. Despite their potential, GCNs remain underutilized in image data scenarios, where input graphs are often computed using features extracted from pre-trained models without further enhancement. This work proposes a novel GCN-based approach for image classification, incorporating neighbor embedding projection techniques to refine the similarity graph and improve the latent feature space. Similarity learning approaches, commonly employed in image retrieval, are also integrated into our workflow. Experimental evaluations across three datasets, four feature extractors, and three GCN models revealed superior results in most scenarios. | - |
Descrição: dc.description | Department of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP) | - |
Descrição: dc.description | Department of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP) | - |
Formato: dc.format | 511-518 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Graph Convolutional Networks | - |
Palavras-chave: dc.subject | Neighbor Embedding Projection | - |
Palavras-chave: dc.subject | Semi-Supervised Learning | - |
Título: dc.title | Neighbor Embedding Projection and Graph Convolutional Networks for Image Classification | - |
Tipo de arquivo: dc.type | aula digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: