Ranking Rules in Associative Classifiers via Borda's Methods

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorDall'Agnol, Maicon-
Autor(es): dc.creatorDe Carvalho, Veronica Oliveira-
Data de aceite: dc.date.accessioned2025-08-21T19:06:47Z-
Data de disponibilização: dc.date.available2025-08-21T19:06:47Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2022-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.23919/CISTI58278.2023.10212078-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/304642-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/304642-
Descrição: dc.descriptionAssociative classifiers have been widely used in many domains due to their inherent interpretability. They are built in steps, one of them aimed at ranking the rules, usually performed through objective measures. Works aim to modify this step in order to obtain a classifier with better performance. Among them are those that use multiple measures simultaneously in order to consider different points of view for a given rule. However, these works present problems regarding execution time and interpretability. Here we show the use of ranking aggregation methods, specifically Borda's methods, to rank the rules through a set of measures. Our results demonstrate that our solution is fast to execute and still guarantee the interpretability of the models, since they contain a statistically significant smaller number of rules.-
Descrição: dc.descriptionInstituto de Geociências e Ciências Exatas (IGCE) Universidade Estadual Paulista (Unesp)-
Descrição: dc.descriptionInstituto de Geociências e Ciências Exatas (IGCE) Universidade Estadual Paulista (Unesp)-
Idioma: dc.languageen-
Relação: dc.relationIberian Conference on Information Systems and Technologies, CISTI-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAggregation Methods-
Palavras-chave: dc.subjectAssociative Classifiers-
Palavras-chave: dc.subjectObjective Measures-
Palavras-chave: dc.subjectRule Ranking-
Palavras-chave: dc.subjectAggregation methods-
Palavras-chave: dc.subjectAssociative classifiers-
Palavras-chave: dc.subjectInterpretability-
Palavras-chave: dc.subjectObjective measure-
Palavras-chave: dc.subjectPerformance-
Palavras-chave: dc.subjectRanking aggregation-
Palavras-chave: dc.subjectRanking rules-
Palavras-chave: dc.subjectRule ranking-
Título: dc.titleRanking Rules in Associative Classifiers via Borda's Methods-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.