Soil conservation and information technologies: A literature review

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorInstituto Agronômico de Campinas-
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.creatorChaves, Jô Vinícius Barrozo-
Autor(es): dc.creatorRosas, Claudia Liliana Gutierrez-
Autor(es): dc.creatorFerraz, Camila Porfirio Albuquerque-
Autor(es): dc.creatorAiello, Luiz Henrique Freguglia-
Autor(es): dc.creatorFilho, Afonso Peche-
Autor(es): dc.creatorMota, Lia Toledo Moreira-
Autor(es): dc.creatorLongo, Regina Márcia-
Autor(es): dc.creatorRibeiro, Admilson Írio-
Data de aceite: dc.date.accessioned2025-08-21T16:16:56Z-
Data de disponibilização: dc.date.available2025-08-21T16:16:56Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-08-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.atech.2025.100935-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/304343-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/304343-
Descrição: dc.descriptionThe evolution of real-time data technologies has significantly transformed several sectors, including agriculture. Advances in sensors, transducers, and artificial intelligence (AI) have driven automation and optimization in agricultural production processes, enabling detailed analyses for soil conservation. However, intensive land use and climate change represent critical challenges, threatening biodiversity and water resource quality. Image processing and spatial data analysis tools support informed decision-making in precision agriculture. This study conducted a systematic review on the SCOPUS platform, emphasizing AI technologies applied to soil management, coverage, and classification. The optimal combination of search terms, including “Agriculture”, “Deep Learning”, and “Soil”, yielded 909 publications. We selected 190 publications for detailed analysis. The review underscored the importance of remote sensing in developing indexes and predictive models, despite existing limitations in the scale of analysis. The growing application of neural network algorithms to recognize soil and plant structures reflects advancements in Information and Communication Technologies (ICT). Since 2020, there has been a notable increase in AI-driven approaches to soil conservation, highlighting a shift toward sustainable and regenerative management practices.-
Descrição: dc.descriptionDepartment of Environmental Science São Paulo State University Institute of Science and Technology, Av. Três de Março 511, Sorocaba-
Descrição: dc.descriptionCenter for Engineering and Automation Instituto Agronômico de Campinas, Rod. Dom Gabriel Paulino Bueno Couto, km 65, Japi 13201-970, SP-
Descrição: dc.descriptionUrban Infrastructure Systems Program Pontifical Catholic University of Campinas. Rua Professor Doutor Euryclides de Jesus Zerbini, 1516, Pq. Rural Fazenda Santa Cândida, Campinas-
Descrição: dc.descriptionDepartment of Environmental Science São Paulo State University Institute of Science and Technology, Av. Três de Março 511, Sorocaba-
Idioma: dc.languageen-
Relação: dc.relationSmart Agricultural Technology-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDigital soil analysis-
Palavras-chave: dc.subjectInternet of Things-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectPrecision agriculture-
Palavras-chave: dc.subjectSoil conservation-
Palavras-chave: dc.subjectSoil imaging-
Palavras-chave: dc.subjectSoil management-
Título: dc.titleSoil conservation and information technologies: A literature review-
Tipo de arquivo: dc.typevídeo-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.