Crossing Limit Cycles Bifurcating from Two or Three Period Annuli in Discontinuous Planar Piecewise Linear Hamiltonian Differential Systems with Three Zones

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal de Itajubá-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorBraga, Denis De Carvalho-
Autor(es): dc.creatorFonseca, Alexander Fernandes Da-
Autor(es): dc.creatorMello, Luis Fernando-
Autor(es): dc.creatorRibeiro, Ronisio Moises-
Autor(es): dc.creatorPessoa, Claudio Gomes-
Data de aceite: dc.date.accessioned2025-08-21T23:42:32Z-
Data de disponibilização: dc.date.available2025-08-21T23:42:32Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-08-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1142/S0218127423501237-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/304219-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/304219-
Descrição: dc.descriptionThe main topic studied in this article is the number of crossing limit cycles bifurcating from two or three period annuli in discontinuous planar piecewise linear Hamiltonian differential systems with three zones. With regard to the studies already published in the literature on this subject, we highlight the following five aspects of our work: (1) the expressions of the first order Melnikov functions for suitable perturbations of a piecewise Hamiltonian system with three zones separated by two parallel lines are obtained explicitly; (2) the way the Melnikov functions are obtained is different from what has already been done for similar studies; (3) the expressions of the Melnikov functions are used to estimate the number of crossing limit cycles that bifurcate simultaneously from period annuli under suitable polynomial perturbations; (4) since the piecewise Hamiltonian system studied here has no symmetry, the number of crossing limit cycles bifurcating from the period annuli is greater than or equal to those obtained in systems already studied; (5) unlike other similar studies, we present a concrete example of a piecewise linear near-Hamiltonian differential system in which the lower bound of the number of limit cycles that bifurcate from the period annuli is reached.-
Descrição: dc.descriptionInstituto de Matemática e Computação Universidade Federal de Itajubá, Avenida BPS 1303, Pinheirinho, Itajubá, MG-
Descrição: dc.descriptionInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, S.J. Rio Preto, SP-
Descrição: dc.descriptionInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, S.J. Rio Preto, SP-
Idioma: dc.languageen-
Relação: dc.relationInternational Journal of Bifurcation and Chaos-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectLimit cycle-
Palavras-chave: dc.subjectMelnikov function-
Palavras-chave: dc.subjectperiod annuli-
Palavras-chave: dc.subjectpiecewise Hamiltonian differential system-
Título: dc.titleCrossing Limit Cycles Bifurcating from Two or Three Period Annuli in Discontinuous Planar Piecewise Linear Hamiltonian Differential Systems with Three Zones-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.