Effectiveness of the Krotov method in finding controls for open quantum systems

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal de São Carlos (UFSCar)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorQuaTI—Quantum Technology & Information-
Autor(es): dc.creatorFernandes, Marllos E F-
Autor(es): dc.creatorFanchini, Felipe F-
Autor(es): dc.creatorde Lima, Emanuel F-
Autor(es): dc.creatorCastelano, Leonardo K-
Data de aceite: dc.date.accessioned2025-08-21T22:07:39Z-
Data de disponibilização: dc.date.available2025-08-21T22:07:39Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-07-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1088/1751-8121/ad0b5b-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/303857-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/303857-
Descrição: dc.descriptionWe apply the Krotov method (KM) for open and closed quantum systems to find optimized controls to manipulate qubit/qutrit systems in the presence of the external environment. In the case of unitary optimization, the KM is first applied to a quantum system neglecting its interaction with the environment. The resulting controls from the unitary optimization are then used to drive the system along with the environmental noise. In the case of non-unitary optimization, the KM already takes into account the noise during the optimization process. We consider two distinct computational tasks: target-state preparation and quantum gate implementation. These tasks are carried out in simple qubit/qutrit systems and also in systems presenting leakage states. For the state preparation cases, the controls from the non-unitary optimization outperform the controls from the unitary optimization. However, as we show here, this is not always true for the implementation of quantum gates. There are some situations where the unitary optimization performs equally well compared to the non-unitary optimization. We verify that these situations correspond to either the absence of leakage states or to the effects of dissipation being spread uniformly over the system, including non-computational levels. For such cases, the quantum gate implementation must cover the entire Hilbert space and there is no way to dodge dissipation. On the other hand, if the subspace containing the computational levels and its complement are differently affected by dissipation, the non-unitary optimization becomes effective.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionDepartamento de Física Universidade Federal de São Carlos (UFSCar)-
Descrição: dc.descriptionFaculty of Sciences UNESP São Paulo State University, Bauru-
Descrição: dc.descriptionQuaTI—Quantum Technology & Information-
Descrição: dc.descriptionFaculty of Sciences UNESP São Paulo State University, Bauru-
Idioma: dc.languageen-
Relação: dc.relationJournal of Physics A: Mathematical and Theoretical-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectadiabatic quantum computing-
Palavras-chave: dc.subjectKrotov method-
Palavras-chave: dc.subjectquantum computation-
Palavras-chave: dc.subjectquantum optimal control theory-
Palavras-chave: dc.subjectteleportation-
Título: dc.titleEffectiveness of the Krotov method in finding controls for open quantum systems-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.