Low-limit acetone detection system combining quantum conductance and capacitance signal analyses derived from oxidized single-layer graphene

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorHostert, Leandro-
Autor(es): dc.creatorOrlandi, Marcelo Ornaghi-
Autor(es): dc.creatorBueno, Paulo Roberto-
Data de aceite: dc.date.accessioned2025-08-21T16:56:13Z-
Data de disponibilização: dc.date.available2025-08-21T16:56:13Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-14-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.snb.2023.134651-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/302919-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/302919-
Descrição: dc.descriptionThis paper introduces a cutting-edge sensing technology that combines quantum conductance and capacitance signal analyses extracted from impedance measurements for the detection of acetone in gaseous or liquid forms. The electrochemical oxidation of a single-layer graphene (SLG) was employed through chronoamperometry, resulting in enhanced acetone sensing capability, enabling potential diabetes control using acetone as a marker. The modified SLG exhibits a distinct impedance response, offering access to the concentration of oxidized groups as a secondary signal in the capacitive Nyquist diagram. This methodology involves measuring the quantum conductance and capacitance of oxidized single-layer graphene by the Quantum Rate theory and applying these highly sensitive signals to measure acetone. Significantly low limits of detection were attained (∼ 0.13 nM). This study confirms that measuring the quantum properties of chemically modified graphene layers can be used to track environmental changes caused by different acetone concentrations. The findings reported here constitute a proof-of-concept that rightly modified 2D-carbonaceous materials can serve as effective analytical and sensing tools for the detection of acetone in the medical field of diabetes management.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionDepartment of Engineering Physics and Mathematics Institute of Chemistry São Paulo State University, São Paulo-
Descrição: dc.descriptionDepartment of Engineering Physics and Mathematics Institute of Chemistry São Paulo State University, São Paulo-
Descrição: dc.descriptionFAPESP: 2017/24839-0-
Descrição: dc.descriptionFAPESP: 2022/07433–9-
Idioma: dc.languageen-
Relação: dc.relationSensors and Actuators B: Chemical-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAcetone sensing-
Palavras-chave: dc.subjectDiabetic control-
Palavras-chave: dc.subjectElectrochemical transducer methods-
Palavras-chave: dc.subjectModified graphene-
Palavras-chave: dc.subjectQuantum capacitance-
Palavras-chave: dc.subjectQuantum mechanical sensing mechanism-
Palavras-chave: dc.subjectQuantum rate-
Título: dc.titleLow-limit acetone detection system combining quantum conductance and capacitance signal analyses derived from oxidized single-layer graphene-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.