Assessing Land Use and Cover Changes arising from the 2022 water crisis in Southeast China: A comparative analysis of Remote Sensing Imagery classifications and Machine Learning algorithms

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorNascimento, Eduardo Soares-
Autor(es): dc.creatorWatanabe, Fernanda Sayuri Yoshino-
Autor(es): dc.creatorde Lourdes Bueno Trindade Galo, Maria-
Autor(es): dc.creatorda Silva, Erivaldo Antonio-
Data de aceite: dc.date.accessioned2025-08-21T21:12:28Z-
Data de disponibilização: dc.date.available2025-08-21T21:12:28Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-11-03-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.5194/isprs-annals-X-3-2024-253-2024-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/302602-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/302602-
Descrição: dc.descriptionThe water crisis in the southeast region of China in 2022, caused by one of the worst heatwaves on record, was characterized by severe shortages of water resources, leading to challenges for local communities, agriculture, and industry. To analyze changes in land use and land cover (LULC) in the Jialing River region, Chongqing, China, we compared Remote Sensing (RS) imagery classifications before and after the intense heat waves of 2022. We evaluated the performance of two machine learning algorithms, KDTree KNN and Random Forest (RF), in LULC classifications. The classifications were carried out based on the RS images from the OLI/Landsat 8 system, NDWI index, and SRTM data. The model performances were similar, the classification accuracy showed that the RF algorithm was superior to KDTree KNN. The RF LULC classification and area calculation corroborate with the visual analysis, reaffirming the superiority of RF, which shows a decrease in water surface area, unlike DKTree KNN.-
Descrição: dc.descriptionPostgraduate Program in Cartographic Sciences (PPGCC) Department of Cartography School of Technology and Sciences São Paulo State University (FCT-UNESP), São Paulo-
Descrição: dc.descriptionDepartment of Cartography School of Technology and Sciences São Paulo State University (UNESP)-
Descrição: dc.descriptionPostgraduate Program in Cartographic Sciences (PPGCC) Department of Cartography School of Technology and Sciences São Paulo State University (FCT-UNESP), São Paulo-
Descrição: dc.descriptionDepartment of Cartography School of Technology and Sciences São Paulo State University (UNESP)-
Formato: dc.format253-260-
Idioma: dc.languageen-
Relação: dc.relationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectand K-Nearest Neighbors Classifier-
Palavras-chave: dc.subjectLand Use and Land Cover-
Palavras-chave: dc.subjectmachine learning-
Palavras-chave: dc.subjectOLI/Landsat 8-
Palavras-chave: dc.subjectrandom forest-
Palavras-chave: dc.subjectremote sensing imagery-
Título: dc.titleAssessing Land Use and Cover Changes arising from the 2022 water crisis in Southeast China: A comparative analysis of Remote Sensing Imagery classifications and Machine Learning algorithms-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.