Solar Energy Forecasting: Case Study of the UNICAMP Gymnasium

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorDo Nascimento, Gleyson Roberto-
Autor(es): dc.creatorJúnior, Hildo Guillardi-
Autor(es): dc.creatorAttux, Romis-
Data de aceite: dc.date.accessioned2025-08-21T15:58:16Z-
Data de disponibilização: dc.date.available2025-08-21T15:58:16Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2023-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/978-3-031-48652-4_7-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/302482-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/302482-
Descrição: dc.descriptionWithin the spectrum of studies conducted by the São Paulo Center for Energy Transition Studies (CPTEn), time series from the Photovoltaic Energy Plant of the UNICAMP Multidisciplinary Gymnasium (GMU-PV) were analyzed. This plant is associated with the first implementation of a photovoltaic system in the context of the Sustainable Campus Project (PCS) at UNICAMP-as a consequence, it originated the most extensive and robust time series in the project. The research, structured according to the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology, aimed to identify the patterns and parameters associated with the energy production of the aforementioned photovoltaic system. Based on Machine and Deep Learning techniques, forecasting models were developed to maximize the use of available resources and promote the sustainability of this energy system at UNICAMP. In evaluating the results, it was observed that the most effective model was the Orthogonal Matching Pursuit (OMP) built from the Python lowcode library, PyCaret. This regression machine learning model led to a coefficient of determination (R2) of 0.935 494 and a root mean square error (RMSE) of 8.561 679.-
Descrição: dc.descriptionUniversity of Campinas (UNICAMP), Campinas-
Descrição: dc.descriptionSão Paulo State University (UNESP) São João da Boa Vista-
Descrição: dc.descriptionSão Paulo State University (UNESP) São João da Boa Vista-
Formato: dc.format92-107-
Idioma: dc.languageen-
Relação: dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDeep Learning-
Palavras-chave: dc.subjectMachine Learning-
Palavras-chave: dc.subjectSolar Energy Forecasting-
Título: dc.titleSolar Energy Forecasting: Case Study of the UNICAMP Gymnasium-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.