Hydrogen storage engineering in PHE-graphene monolayer via potassium (K) decoration

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorChongqing University of Arts and Sciences-
Autor(es): dc.creatorLaranjeira, José A.S.-
Autor(es): dc.creatorMartins, Nicolas F.-
Autor(es): dc.creatorYe, Lingyu-
Autor(es): dc.creatorSambrano, Julio R.-
Autor(es): dc.creatorChen, Xihao-
Data de aceite: dc.date.accessioned2025-08-21T19:36:00Z-
Data de disponibilização: dc.date.available2025-08-21T19:36:00Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2025-04-29-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.ijhydene.2025.03.288-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/302327-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/302327-
Descrição: dc.descriptionThe increasing demand for ecofriendly and efficient energy sources accelerates the transition from fossil fuels to hydrogen (H2), which requires advances in production, transportation, and storage technologies. This study investigates the functionalization of PHE-graphene via potassium (K) decoration. A comprehensive analysis of the K@PHE-graphene system revealed a transition from metallic to semiconductor character due to charge transfer from K adatoms (+0.89|e|). Molecular dynamics simulations confirmed the retention of K atoms at their preferred adsorption sites, ensuring the structural integrity of the substrate. K@PHE-graphene complex has an exceptional adsorption capacity of 7.47 wt%, exceeding the DOE target of 5.5 wt%. Thermodynamic analysis also highlighted an optimal storage conditions, achieving maximum capacity between 100-150 K at low pressures (0–20 atm) and maintaining efficiency at higher pressures (40–60 atm) even at elevated temperatures. These findings establish K@PHE-graphene as a promising candidate for reversible hydrogen storage applications.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionChongqing Municipal Education Commission Foundation-
Descrição: dc.descriptionModeling and Molecular Simulation Group São Paulo State University (UNESP) School of Sciences, SP-
Descrição: dc.descriptionSchool of Materials Science and Engineering Chongqing University of Arts and Sciences-
Descrição: dc.descriptionModeling and Molecular Simulation Group São Paulo State University (UNESP) School of Sciences, SP-
Descrição: dc.descriptionFAPESP: 2020/01144-0-
Descrição: dc.descriptionFAPESP: 2022/03959-6-
Descrição: dc.descriptionFAPESP: 2022/16509-9-
Descrição: dc.descriptionFAPESP: 2024/05087-1-
Descrição: dc.descriptionCNPq: 307213/2021–8-
Descrição: dc.descriptionChongqing Municipal Education Commission Foundation: KJQN202201327-
Descrição: dc.descriptionChongqing Municipal Education Commission Foundation: KJQN202301339-
Formato: dc.format139-149-
Idioma: dc.languageen-
Relação: dc.relationInternational Journal of Hydrogen Energy-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subject2D material-
Palavras-chave: dc.subjectEnergy-
Palavras-chave: dc.subjectHydrogen-
Palavras-chave: dc.subjectPHE-graphene-
Palavras-chave: dc.subjectStorage-
Título: dc.titleHydrogen storage engineering in PHE-graphene monolayer via potassium (K) decoration-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.