Nonlinear parametric models of viscoelastic fluid flows

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorNew York University-
Autor(es): dc.contributorUniversity of Washington-
Autor(es): dc.creatorOishi, C. M.-
Autor(es): dc.creatorKaptanoglu, A. A.-
Autor(es): dc.creatorKutz, J. Nathan-
Autor(es): dc.creatorBrunton, S. L.-
Data de aceite: dc.date.accessioned2025-08-21T20:21:19Z-
Data de disponibilização: dc.date.available2025-08-21T20:21:19Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-10-02-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1098/rsos.240995-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/301392-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/301392-
Descrição: dc.descriptionReduced-order models (ROMs) have been widely adopted in fluid mechanics, particularly in the context of Newtonian fluid flows. These models offer the ability to predict complex dynamics, such as instabilities and oscillations, at a considerably reduced computational cost. In contrast, the reduced-order modelling of non-Newtonian viscoelastic fluid flows remains relatively unexplored. This work leverages the sparse identification of nonlinear dynamics (SINDy) algorithm to develop interpretable ROMs for viscoelastic flows. In particular, we explore a benchmark oscillatory viscoelastic flow on the four-roll mill geometry using the classical Oldroyd-B fluid. This flow exemplifies many canonical challenges associated with non-Newtonian flows, including transitions, asymmetries, instabilities, and bifurcations arising from the interplay of viscous and elastic forces, all of which require expensive computations in order to resolve the fast timescales and long transients characteristic of such flows. First, we demonstrate the effectiveness of our data-driven surrogate model to predict the transient evolution and accurately reconstruct the spatial flow field for fixed flow parameters. We then develop a fully parametric, nonlinear model capable of capturing the dynamic variations as a function of the Weissenberg number. While the training data are predominantly concentrated on a limit cycle regime for moderate Wi, we show that the parametrized model can be used to extrapolate, accurately predicting the dominant dynamics in the case of high Weissenberg numbers. The proposed methodology represents an initial step in applying machine learning and reduced-order modelling techniques to viscoelastic flows.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia São Paulo State University Prudente-
Descrição: dc.descriptionCourant Institute of Mathematical Sciences New York University-
Descrição: dc.descriptionDepartment of Applied Mathematics University of Washington-
Descrição: dc.descriptionDepartment of Mechanical Engineering University of Washington-
Descrição: dc.descriptionDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia São Paulo State University Prudente-
Descrição: dc.descriptionCNPq: 305383/2019-1-
Idioma: dc.languageen-
Relação: dc.relationRoyal Society Open Science-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectcomputational fluid dynamics-
Palavras-chave: dc.subjectdata-driven models-
Palavras-chave: dc.subjectmachine learning-
Palavras-chave: dc.subjectreduced-order models-
Palavras-chave: dc.subjectsparse identification of nonlinear dynamics-
Palavras-chave: dc.subjectviscoelastic fluids-
Título: dc.titleNonlinear parametric models of viscoelastic fluid flows-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.