Development of a hybrid energy harvesting system based on thermoelectric and electromagnetic generators for use in industrial electric motors

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorInstituto de Ciência e Tecnologia - Campus de Sorocaba-
Autor(es): dc.creatorde Oliveira, Luiz Fernando Pinto-
Autor(es): dc.creatorde Oliveira Morais, Flávio José-
Autor(es): dc.creatorManera, Leandro Tiago-
Data de aceite: dc.date.accessioned2025-08-21T16:35:07Z-
Data de disponibilização: dc.date.available2025-08-21T16:35:07Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-06-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.seta.2024.103802-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/301320-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/301320-
Descrição: dc.descriptionIn Industry 4.0, advanced systems for predicting maintenance of industrial electric motors are being developed. These systems use electronic sensors and wireless communication in low-power circuits. To enable self-sustaining devices and long-term monitoring strategies, energy harvesting techniques are employed. This paper describes a hybrid energy harvesting system based on a Thermoelectric Generator (TEG) and Current Transformer (CT) that is used in an Internet of Things (IoT) vibration monitoring system for industrial electric motors. The proposed electronic circuit is designed to operate in extreme conditions of electrical energy shortage and allows for energy supply via capacitor, supercapacitor, and backup battery. A new mechanical coupling system is also presented for attaching TEGs to motors. The integration of TEGs and CTs resulted in a maximum power output of 320 μW and energy autonomy of 80.76 min (via TEG), which was further improved to 1540 μW after 10.32 min (via CT). The energy autonomy of the IoT device was extended from 2 to 33 days by using a hybrid energy storage circuit, exceeding the energy requirements for making the IoT device self-sustaining by 54.21%.-
Descrição: dc.descriptionState University of Campinas (Unicamp) Center for Energy and Petroleum Studies (CEPETRO), R. Cora Coralina, 350, Cidade Universitária, SP-
Descrição: dc.descriptionState University of Campinas (Unicamp) School of Electrical and Computer Engineering (FEEC), Av. Albert Einstein, 400, Cidade Universitária, SP-
Descrição: dc.descriptionSão Paulo State University (UNESP) School of Sciences and Engineering (FCE), Av. Domingos da Costa Lopes, 780, Jardim Itaipu, SP-
Descrição: dc.descriptionPrograma de Pós-Graduação em Engenharia Elétrica (Mestrado) Instituto de Ciência e Tecnologia - Campus de Sorocaba, Av. Três de Março, 511 - Alto da Boa Vista, SP-
Descrição: dc.descriptionSão Paulo State University (UNESP) School of Sciences and Engineering (FCE), Av. Domingos da Costa Lopes, 780, Jardim Itaipu, SP-
Idioma: dc.languageen-
Relação: dc.relationSustainable Energy Technologies and Assessments-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCT-
Palavras-chave: dc.subjectCurrent transformer-
Palavras-chave: dc.subjectEnergy harvesting-
Palavras-chave: dc.subjectInternet of Things-
Palavras-chave: dc.subjectTEG-
Palavras-chave: dc.subjectThermoelectric generator-
Palavras-chave: dc.subjectUltra low-power-
Título: dc.titleDevelopment of a hybrid energy harvesting system based on thermoelectric and electromagnetic generators for use in industrial electric motors-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.