Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade de São Paulo (USP) | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.creator | Gonçalves, Wellington Belarmino | - |
Autor(es): dc.creator | Teixeira, Wanderson Sirley Reis | - |
Autor(es): dc.creator | Sampaio, Aryele Nunes da Cruz Encide | - |
Autor(es): dc.creator | Martins, Otávio Augusto | - |
Autor(es): dc.creator | Cervantes, Evelyn Perez | - |
Autor(es): dc.creator | Mioni, Mateus de Souza Ribeiro | - |
Autor(es): dc.creator | Gruber, Jonas | - |
Autor(es): dc.creator | Pereira, Juliano Gonçalves | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:16:32Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:16:32Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-10-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.3390/microorganisms12112250 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/301268 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/301268 | - |
Descrição: dc.description | Evaluation concerning the presence of bacteria in meat products is mandatory for commercializing these goods. Although food bacteria detection is based on microbiological methods, these assays are usually laborious and time-consuming. In this paper, an electronic nose is used to differentiate Salmonella spp. (SA), Escherichia coli (EC), and Pseudomonas fluorescens (PF) inoculated in raw meat (beef, chicken, and pork) and incubated at 22 °C for 3 days. The obtained data were evaluated by principal component analysis (PCA) and different machine learning algorithms. From the graphical analysis of the PCA, on day 1, the clusters were close to each other for beef, chicken, and pork, while on days 2 and 3, more separated bacteria clusters were obtained regardless of the meat type, allowing for the discrimination of the samples for the latter days. To estimate the growth rates of the microorganisms, the distance between clusters was calculated and provided a pattern for the three bacteria, with the slowest-, moderate-, and fastest-growing being EC, SA, and PF, respectively. Concerning the machine learning algorithms, the accuracy varied from 93.8 to 100% for beef and chicken, while for pork, it varied from 75% to 100%. Thus, these results suggest that the proposed methodology based on electronic nose has the potential for the direct discrimination of bacteria in raw meat, with reduced analysis time, costs, and manipulating steps. | - |
Descrição: dc.description | Departamento de Química Fundamental Instituto de Química Universidade de São Paulo, Av. Prof Lineu Prestes, 748, SP | - |
Descrição: dc.description | Faculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP | - |
Descrição: dc.description | Instituto de Matemática e Estatística Universidade de São Paulo, SP | - |
Descrição: dc.description | Departamento de Patologia Reprodução e Saúde Única Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP | - |
Descrição: dc.description | Faculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP | - |
Descrição: dc.description | Departamento de Patologia Reprodução e Saúde Única Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Microorganisms | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | electronic nose | - |
Palavras-chave: dc.subject | food safety | - |
Palavras-chave: dc.subject | foodborne bacteria | - |
Palavras-chave: dc.subject | machine learning | - |
Palavras-chave: dc.subject | meat | - |
Palavras-chave: dc.subject | microbiology | - |
Título: dc.title | Direct Discrimination and Growth Estimation of Foodborne Bacteria in Raw Meat Using Electronic Nose | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: