Pulsed interactions unify reaction-diffusion and spatial nonlocal models for biological pattern formation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCenter for Advanced Systems Understanding-
Autor(es): dc.contributorHelmholtz-Zentrum Dresden-Rossendorf-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorHelmholtz Centre for Environmental Research—UFZ-
Autor(es): dc.contributorUniversity of Maryland-
Autor(es): dc.contributorCSIC-UIB-
Autor(es): dc.creatorColombo, Eduardo H.-
Autor(es): dc.creatorMartinez-Garcia, Ricardo-
Autor(es): dc.creatorCalabrese, Justin M.-
Autor(es): dc.creatorLópez, Cristóbal-
Autor(es): dc.creatorHernández-García, Emilio-
Data de aceite: dc.date.accessioned2025-08-21T22:00:06Z-
Data de disponibilização: dc.date.available2025-08-21T22:00:06Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-03-29-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1088/1742-5468/ad2b57-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/301256-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/301256-
Descrição: dc.descriptionThe emergence of a spatially organized population distribution depends on the dynamics of the population and mediators of interaction (activators and inhibitors). Two broad classes of models have been used to investigate when and how self-organization is triggered, namely reaction-diffusion and spatially nonlocal models. Nevertheless, these models implicitly assume smooth propagation scenarios, neglecting that individuals interact many times by exchanging short and abrupt pulses of the mediating substance. A recently proposed framework has made advances in properly accounting for these short-scale fluctuations by applying a coarse-graining procedure on the pulse dynamics. In this paper, we generalize the coarse-graining procedure and apply the extended formalism to new scenarios in which mediators influence individuals’ reproductive success or their motility. We show that, in the slow- and fast-mediator limits, pulsed interactions recover, respectively, the reaction-diffusion and nonlocal models, providing a mechanistic connection between them. Furthermore, at each limit, the spatial stability condition is qualitatively different, leading to a timescale-induced transition where spatial patterns emerge as mediator dynamics becomes sufficiently fast.-
Descrição: dc.descriptionCenter for Advanced Systems Understanding, Untermarkt 20-
Descrição: dc.descriptionHelmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista—UNESP, SP-
Descrição: dc.descriptionDepartment of Ecological Modelling Helmholtz Centre for Environmental Research—UFZ-
Descrição: dc.descriptionDepartment of Biology University of Maryland-
Descrição: dc.descriptionInstituto de Física Interdisciplinar y Sistemas Complejos (IFISC) CSIC-UIB Campus Universitat Illes Balears-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual Paulista—UNESP, SP-
Idioma: dc.languageen-
Relação: dc.relationJournal of Statistical Mechanics: Theory and Experiment-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectcoarse-graining-
Palavras-chave: dc.subjectnonlinear dynamics-
Palavras-chave: dc.subjectpattern formation-
Palavras-chave: dc.subjectpopulation dynamics-
Título: dc.titlePulsed interactions unify reaction-diffusion and spatial nonlocal models for biological pattern formation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.