Correlation functions of huge operators in AdS3/CFT2: domes, doors and book pages

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorPerimeter Institute for Theoretical Physics-
Autor(es): dc.contributorUniversity of Waterloo-
Autor(es): dc.contributorUniversidad Complutense-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAbajian, Jacob-
Autor(es): dc.creatorAprile, Francesco-
Autor(es): dc.creatorMyers, Robert C.-
Autor(es): dc.creatorVieira, Pedro-
Data de aceite: dc.date.accessioned2025-08-21T18:42:41Z-
Data de disponibilização: dc.date.available2025-08-21T18:42:41Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-03-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/JHEP03(2024)118-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/301177-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/301177-
Descrição: dc.descriptionWe describe solutions of asymptotically AdS3 Einstein gravity that are sourced by the insertion of operators in the boundary CFT2, whose dimension scales with the central charge of the theory. Previously, we found that the geometry corresponding to a black hole two-point function is simply related to an infinite covering of the Euclidean BTZ black hole [1]. However, here we find that the geometry sourced by the presence of a third black hole operator turns out to be a Euclidean wormhole with two asymptotic boundaries. We construct this new geometry as a quotient of empty AdS3 realized by domes and doors. The doors give access to the infinite covers that are needed to describe the insertion of the operators, while the domes describe the fundamental domains of the quotient on each cover. In particular, despite the standard fact that the Fefferman-Graham expansion is single-sided, the extended bulk geometry contains a wormhole that connects two asymptotic boundaries. We observe that the two-sided wormhole can be made single-sided by cutting off the wormhole and gluing on a “Lorentzian cap”. In this way, the geometry gives the holographic description of a three-point function, up to phases. By rewriting the metric in terms of a Liouville field, we compute the on-shell action and find that the result matches with the Heavy-Heavy-Heavy three-point function predicted by the modular bootstrap. Finally, we describe the geometric transition between doors and defects, that is, when one or more dual operators describe a conical defect insertion, rather than a black hole insertion.-
Descrição: dc.descriptionPerimeter Institute for Theoretical Physics-
Descrição: dc.descriptionDepartment of Physics & amp; Astronomy University of Waterloo-
Descrição: dc.descriptionDepartamento de Física Teórica & amp; IPARCOS Ciencias Físicas Universidad Complutense-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research IFT-UNESP, SP-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research IFT-UNESP, SP-
Idioma: dc.languageen-
Relação: dc.relationJournal of High Energy Physics-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAdS-CFT Correspondence-
Palavras-chave: dc.subjectBlack Holes in String Theory-
Palavras-chave: dc.subjectField Theories in Lower Dimensions-
Palavras-chave: dc.subjectScale and Conformal Symmetries-
Título: dc.titleCorrelation functions of huge operators in AdS3/CFT2: domes, doors and book pages-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.