Infrared spectroscopy for fast screening of diabetes and periodontitis

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Taubaté - UNITAU-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversity College Cork-
Autor(es): dc.contributorCentro Universitário Braz Cubas-
Autor(es): dc.creatorda Silva, Sara Maria Santos Dias-
Autor(es): dc.creatorFerreira, Camila Lopes-
Autor(es): dc.creatorRizzato, Jaqueline Maria Brandão-
Autor(es): dc.creatorToledo, Giovana dos Santos-
Autor(es): dc.creatorFurukawa, Monique-
Autor(es): dc.creatorRovai, Emanuel Silva-
Autor(es): dc.creatorNogueira, Marcelo Saito-
Autor(es): dc.creatorCarvalho, Luis Felipe das Chagas e Silva de-
Data de aceite: dc.date.accessioned2025-08-21T16:17:12Z-
Data de disponibilização: dc.date.available2025-08-21T16:17:12Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-04-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.pdpdt.2024.104106-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/299708-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/299708-
Descrição: dc.descriptionSignificance: FT-IR is an important and emerging tool, providing information related to the biochemical composition of biofluids. It is important to demonstrate that there is an efficacy in separating healthy and diseased groups, helping to establish FT-IR uses as fast screening tool. Aim: Via saliva diagnosis evaluate the accuracy of FT-IR associate with machine learning model for classification among healthy (control group), diabetic (D) and periodontitis (P) patients and the association of both diseases (DP). Approach: Eighty patients diagnosed with diabetes and periodontitis through conventional methods were recruited and allocated in one of the four groups. Saliva samples were collected from participants of each group (n = 20) and were processed using Bruker Alpha II spectrometer in a FT-IR spectral fingerprint region between 600 and–1800 cm−1, followed by data preprocessing and analysis using machine learning tools. Results: Various FTI-R peaks were detectable and attributed to specific vibrational modes, which were classified based on confusion matrices showed in paired groups. The highest true positive rates (TPR) appeared between groups C vs D (93.5 % ± 2.7 %), groups C vs. DP (89.2 % ± 4.1 %), and groups D and P (90.4 % ± 3.2 %). However, P vs DP presented higher TPR for DP (84.1 % ±3.1 %) while D vs. DP the highest rate for DP was 81.7 % ± 4.3 %. Analyzing all groups together, the TPR decreased. Conclusion: The system used is portable and robust and can be widely used in clinical environments and hospitals as a new diagnostic technique. Studies in our groups are being conducted to solidify and expand data analysis methods with friendly language for healthcare professionals. It was possible to classify healthy patients in a range of 78–93 % of accuracy. Range over 80 % of accuracy between periodontitis and diabetes were observed. A general classification model with lower TPR instead of a pairwise classification would only have advantages in scenarios where no prior patient information is available regarding diabetes and periodontitis status.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionScience Foundation Ireland-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionScience Health Post-graduate Program University of Taubaté - UNITAU-
Descrição: dc.descriptionDepartment of Diagnosis and Surgery Institute of Science and Technology of São José dos Campos Universidade Estadual Paulista (Unesp), São José Dos Campos-
Descrição: dc.descriptionTyndall National Institute University College Cork-
Descrição: dc.descriptionDepartment of Physics University College Cork-
Descrição: dc.descriptionCentro Universitário Braz Cubas-
Descrição: dc.descriptionDepartment of Diagnosis and Surgery Institute of Science and Technology of São José dos Campos Universidade Estadual Paulista (Unesp), São José Dos Campos-
Descrição: dc.descriptionFAPESP: 2017/21827-1-
Descrição: dc.descriptionFAPESP: 2022/00387-1-
Descrição: dc.descriptionFAPESP: 2023/01749-7-
Descrição: dc.descriptionScience Foundation Ireland: 22/RP-2TF/10293-
Descrição: dc.descriptionCAPES: 406761/2022-1-
Descrição: dc.descriptionFAPESP: FAPESP 2019/14846-5-
Idioma: dc.languageen-
Relação: dc.relationPhotodiagnosis and Photodynamic Therapy-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDiabetes mellitus-
Palavras-chave: dc.subjectFTIR-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectPeriodontitis-
Palavras-chave: dc.subjectSaliva-
Título: dc.titleInfrared spectroscopy for fast screening of diabetes and periodontitis-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.