Green, Biodegradable, and Flexible Resistive Heaters-Based Upon a Novel Laser-Induced Graphene Manufacturing Process

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversity of Glasgow-
Autor(es): dc.creatorMorais, Rogério Miranda-
Autor(es): dc.creatorVieira, Douglas Henrique-
Autor(es): dc.creatorOzório, Maiza da Silva-
Autor(es): dc.creatorNogueira, Gabriel Leonardo-
Autor(es): dc.creatorRollo, Andrew-
Autor(es): dc.creatorKettle, Jeff-
Autor(es): dc.creatorAlves, Neri-
Data de aceite: dc.date.accessioned2025-08-21T17:21:05Z-
Data de disponibilização: dc.date.available2025-08-21T17:21:05Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-10-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1002/adsu.202400166-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/298826-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/298826-
Descrição: dc.descriptionLaser induced graphene (LIG), prepared directly with an in situ synthesis method onto Kraft Paper substrates, is proposed for the manufacture of biodegradable electronic devices. The investigation explores the influence of laser power and scanning speed on the properties of LIG conductive tracks and a sheet resistance of up to 0.25 kΩ sq−1. Raman spectroscopy and microscopy is used to analyse the interfacial properties, in particular the transition of cellulose fibers to carbonized graphene flakes through photothermal pyrolysis, leading to the formation of coral-like structures. To demonstrate the applicability of the approach, flexible resistive heaters have been manufactured and tests show rapid heating with a homogeneous distribution and a maximum temperature of 145.5 °C. Additionally, an electro-thermal conversion efficiency (hr+c) of 17.05 mW (°C cm2)−1 is achieved. Finally, a comparative Life Cycle Assessment with FR-4 based electronics has been undertaken and the environmental impacts are calculated. The impact assessment shows a two magnitude lower impact on the environment for most categories, which suggests the approach is beneficial for the environment at a global production level. The results show that the photothermal pyrolysis of Kraft paper using a laser diode allows for low-impact devices flexible and green electronics products.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionEngineering and Physical Sciences Research Council-
Descrição: dc.descriptionFaculty of Science and Technology (FCT) Physics Department São Paulo State University – UNESP, SP-
Descrição: dc.descriptionFaculty of Science (FC) Physics Department São Paulo State University – UNESP, SP-
Descrição: dc.descriptionJames Watt School of Engineering University of Glasgow-
Descrição: dc.descriptionFaculty of Science and Technology (FCT) Physics Department São Paulo State University – UNESP, SP-
Descrição: dc.descriptionFaculty of Science (FC) Physics Department São Paulo State University – UNESP, SP-
Descrição: dc.descriptionCAPES: 001-
Descrição: dc.descriptionFAPESP: 2022/12332-7-
Descrição: dc.descriptionEngineering and Physical Sciences Research Council: EP/W019248/1-
Idioma: dc.languageen-
Relação: dc.relationAdvanced Sustainable Systems-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectflexible resistive heater-
Palavras-chave: dc.subjectkraft paper-
Palavras-chave: dc.subjectlaser-induced graphene-
Palavras-chave: dc.subjectpaper electronics-
Palavras-chave: dc.subjectsustainable electronics-
Título: dc.titleGreen, Biodegradable, and Flexible Resistive Heaters-Based Upon a Novel Laser-Induced Graphene Manufacturing Process-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.