The Rosenzweig-Porter model revisited for the three Wigner-Dyson symmetry classes

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorInstitute for Basic Science (IBS)-
Autor(es): dc.contributorS.K.C.G. (Auto.) College-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorKorea University of Science and Technology (UST)-
Autor(es): dc.creatorČadež, Tilen-
Autor(es): dc.creatorKumar Nandy, Dillip-
Autor(es): dc.creatorRosa, Dario-
Autor(es): dc.creatorAndreanov, Alexei-
Autor(es): dc.creatorDietz, Barbara-
Data de aceite: dc.date.accessioned2025-08-21T22:04:09Z-
Data de disponibilização: dc.date.available2025-08-21T22:04:09Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-08-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1088/1367-2630/ad5d86-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/298565-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/298565-
Descrição: dc.descriptionInterest in the Rosenzweig-Porter model, a parameter-dependent random-matrix model which interpolates between Poisson and Wigner-Dyson (WD) statistics describing the fluctuation properties of the eigenstates of typical quantum systems with regular and chaotic classical dynamics, respectively, has come up again in recent years in the field of many-body quantum chaos. The reason is that the model exhibits parameter ranges in which the eigenvectors are Anderson-localized, non-ergodic (fractal) and ergodic extended, respectively. The central question is how these phases and their transitions can be distinguished through properties of the eigenvalues and eigenvectors. We present numerical results for all symmetry classes of Dyson’s threefold way. We analyzed the fluctuation properties in the eigenvalue spectra, and compared them with existing and new analytical results. Based on these results we propose characteristics of the short- and long-range correlations as measures to explore the transition from Poisson to WD statistics. Furthermore, we performed in-depth studies of the properties of the eigenvectors in terms of the fractal dimensions, the Kullback-Leibler (KL) divergences and the fidelity susceptibility. The ergodic and Anderson transitions take place at the same parameter values and a finite size scaling analysis of the KL divergences at the transitions yields the same critical exponents for all three WD classes, thus indicating superuniversality of these transitions.-
Descrição: dc.descriptionCenter for Theoretical Physics of Complex Systems Institute for Basic Science (IBS)-
Descrição: dc.descriptionDepartment of Physics S.K.C.G. (Auto.) College, Odisha-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP—Univ. Estadual Paulista, Rua Dr Bento Teobaldo Ferraz 271 SP-
Descrição: dc.descriptionBasic Science Program Korea University of Science and Technology (UST)-
Descrição: dc.descriptionICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP—Univ. Estadual Paulista, Rua Dr Bento Teobaldo Ferraz 271 SP-
Idioma: dc.languageen-
Relação: dc.relationNew Journal of Physics-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectAnderson transition-
Palavras-chave: dc.subjectergodic transition-
Palavras-chave: dc.subjectfractal states-
Palavras-chave: dc.subjectnon-ergodic phase-
Palavras-chave: dc.subjectquantum Chaos-
Palavras-chave: dc.subjectrandom matrix theory-
Palavras-chave: dc.subjectWigner-Dyson ensembles-
Título: dc.titleThe Rosenzweig-Porter model revisited for the three Wigner-Dyson symmetry classes-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.