Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Universidade Federal de Santa Catarina (UFSC) | - |
Autor(es): dc.contributor | Universidade de São Paulo (USP) | - |
Autor(es): dc.contributor | Universidade Estadual de Mato Grosso do Sul (UEMS) | - |
Autor(es): dc.contributor | Federal Institute of São Paulo (IFSP) | - |
Autor(es): dc.creator | Pazin, Wallance Moreira | - |
Autor(es): dc.creator | Furini, Leonardo Negri | - |
Autor(es): dc.creator | Braz, Daniel C. | - |
Autor(es): dc.creator | Popolin-Neto, Mário | - |
Autor(es): dc.creator | Fernandes, José Diego | - |
Autor(es): dc.creator | Leopoldo Constantino, Carlos J. | - |
Autor(es): dc.creator | Oliveira, Osvaldo N. | - |
Data de aceite: dc.date.accessioned | 2025-08-21T23:46:24Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T23:46:24Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-01-25 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1021/acsanm.3c05848 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/298155 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/298155 | - |
Descrição: dc.description | In this study, we introduce a simplified surface-enhanced Raman scattering (SERS) nanobiosensor for precise detection of a SARS-CoV-2 antigen, leveraging supervised machine learning approaches. The biosensor was made with Au nanoislands conjugated with a 4-aminothiophenol Raman reporter and an anti-SARS-CoV-2 antibody. Through the integration of feature selection and learning algorithms, namely, logistic regression, linear discriminant analysis, and support vector machine, we achieved high accuracies ranging from 96 to 100% in antigen detection. Furthermore, we identified the underlying detection mechanisms by employing the concept of multidimensional calibration space, which is based on decision trees and random forest algorithms. This analysis with explainable machine learning allowed us to gain insights into the reasons why our simplified nanobiosensor exhibits lower sensitivity compared with that of the previous sandwich-type immunosensors for SARS-CoV-2. The results presented here emphasize the potential of supervised machine learning in SERS biosensing, which can be applied to any type of diagnostics. | - |
Descrição: dc.description | Department of Physics and Meteorology School of Sciences São Paulo State University (UNESP), São Paulo | - |
Descrição: dc.description | Department of Physics Federal University of Santa Catarina, Santa Catarina | - |
Descrição: dc.description | São Carlos Institute of Physics University of São Paulo (USP), São Paulo | - |
Descrição: dc.description | Mato Grosso do Sul State University (UEMS), Mato Grosso do Sul | - |
Descrição: dc.description | Federal Institute of São Paulo (IFSP), São Paulo | - |
Descrição: dc.description | Institute of Mathematics and Computer Sciences (ICMC) University of São Paulo (USP), São Paulo | - |
Descrição: dc.description | Department of Physics School of Sciences and Technology São Paulo State University (UNESP), São Paulo | - |
Descrição: dc.description | Department of Physics and Meteorology School of Sciences São Paulo State University (UNESP), São Paulo | - |
Descrição: dc.description | Department of Physics School of Sciences and Technology São Paulo State University (UNESP), São Paulo | - |
Formato: dc.format | 2335-2342 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | ACS Applied Nano Materials | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | biosensors | - |
Palavras-chave: dc.subject | clinical diagnosis | - |
Palavras-chave: dc.subject | machine learning | - |
Palavras-chave: dc.subject | nanobiosensor | - |
Palavras-chave: dc.subject | SARS-CoV-2 | - |
Palavras-chave: dc.subject | surface-enhanced Raman scattering | - |
Título: dc.title | Explainable Machine Learning to Unveil Detection Mechanisms with Au Nanoisland-Based Surface-Enhanced Raman Scattering for SARS-CoV-2 Antigen Detection | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: