Restoring the Fluctuation–Dissipation Theorem in Kardar–Parisi–Zhang Universality Class through a New Emergent Fractal Dimension

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal do ABC (UFABC)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade de Brasília (UnB)-
Autor(es): dc.contributorUniversidade Federal Fluminense (UFF)-
Autor(es): dc.creatorGomes-Filho, Márcio S.-
Autor(es): dc.creatorde Castro, Pablo-
Autor(es): dc.creatorLiarte, Danilo B.-
Autor(es): dc.creatorOliveira, Fernando A.-
Data de aceite: dc.date.accessioned2025-08-21T17:12:42Z-
Data de disponibilização: dc.date.available2025-08-21T17:12:42Z-
Data de envio: dc.date.issued2025-04-29-
Data de envio: dc.date.issued2024-03-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/e26030260-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/297320-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/297320-
Descrição: dc.descriptionThe Kardar–Parisi–Zhang (KPZ) equation describes a wide range of growth-like phenomena, with applications in physics, chemistry and biology. There are three central questions in the study of KPZ growth: the determination of height probability distributions; the search for ever more precise universal growth exponents; and the apparent absence of a fluctuation–dissipation theorem (FDT) for spatial dimension (Formula presented.). Notably, these questions were answered exactly only for (Formula presented.) dimensions. In this work, we propose a new FDT valid for the KPZ problem in (Formula presented.) dimensions. This is achieved by rearranging terms and identifying a new correlated noise which we argue to be characterized by a fractal dimension (Formula presented.). We present relations between the KPZ exponents and two emergent fractal dimensions, namely (Formula presented.), of the rough interface, and (Formula presented.). Also, we simulate KPZ growth to obtain values for transient versions of the roughness exponent (Formula presented.), the surface fractal dimension (Formula presented.) and, through our relations, the noise fractal dimension (Formula presented.). Our results indicate that KPZ may have at least two fractal dimensions and that, within this proposal, an FDT is restored. Finally, we provide new insights into the old question about the upper critical dimension of the KPZ universality class.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionCentro de Ciências Naturais e Humanas Universidade Federal do ABC, SP-
Descrição: dc.descriptionICTP–South American Institute for Fundamental Research Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, SP-
Descrição: dc.descriptionInstituto de Física Universidade de Brasília, DF-
Descrição: dc.descriptionInstituto de Física Universidade Federal Fluminense, Avenida Litorânea s/n, RJ-
Descrição: dc.descriptionICTP–South American Institute for Fundamental Research Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, SP-
Descrição: dc.descriptionFAPESP: 2021/10139-2-
Descrição: dc.descriptionFAPESP: 2021/14285-3-
Descrição: dc.descriptionFAPESP: 2021/14335-0-
Descrição: dc.descriptionFAPESP: 2022/09615-7-
Descrição: dc.descriptionFAPESP: 2022/13872-5-
Idioma: dc.languageen-
Relação: dc.relationEntropy-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectfluctuation–dissipation theorem-
Palavras-chave: dc.subjectfractal dimensions-
Palavras-chave: dc.subjectgrowth phenomena-
Palavras-chave: dc.subjectKPZ equation-
Palavras-chave: dc.subjectuniversality-
Título: dc.titleRestoring the Fluctuation–Dissipation Theorem in Kardar–Parisi–Zhang Universality Class through a New Emergent Fractal Dimension-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.