Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Federal University of Technology - Paraná (UTFPR) | - |
Autor(es): dc.contributor | Pavol Jozef Šafárik University (UPJS) | - |
Autor(es): dc.contributor | ELTE - Eötvös Loránd University | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
Autor(es): dc.contributor | Universidade Federal de São Carlos (UFSCar) | - |
Autor(es): dc.contributor | University of Trieste (UniTS) | - |
Autor(es): dc.contributor | Eindhoven University of Technology (TU/e) | - |
Autor(es): dc.contributor | Universidade de São Paulo (USP) | - |
Autor(es): dc.creator | Gomes Mantovani, Rafael | - |
Autor(es): dc.creator | Horváth, Tomáš | - |
Autor(es): dc.creator | Rossi, André L. D. | - |
Autor(es): dc.creator | Cerri, Ricardo | - |
Autor(es): dc.creator | Barbon Junior, Sylvio | - |
Autor(es): dc.creator | Vanschoren, Joaquin | - |
Autor(es): dc.creator | Carvalho, André C. P. L. F. de | - |
Data de aceite: dc.date.accessioned | 2025-08-21T19:16:08Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T19:16:08Z | - |
Data de envio: dc.date.issued | 2025-04-29 | - |
Data de envio: dc.date.issued | 2024-05-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/s10618-024-01002-5 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/297074 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/297074 | - |
Descrição: dc.description | Machine learning algorithms often contain many hyperparameters whose values affect the predictive performance of the induced models in intricate ways. Due to the high number of possibilities for these hyperparameter configurations and their complex interactions, it is common to use optimization techniques to find settings that lead to high predictive performance. However, insights into efficiently exploring this vast space of configurations and dealing with the trade-off between predictive and runtime performance remain challenging. Furthermore, there are cases where the default hyperparameters fit the suitable configuration. Additionally, for many reasons, including model validation and attendance to new legislation, there is an increasing interest in interpretable models, such as those created by the decision tree (DT) induction algorithms. This paper provides a comprehensive approach for investigating the effects of hyperparameter tuning for the two DT induction algorithms most often used, CART and C4.5. DT induction algorithms present high predictive performance and interpretable classification models, though many hyperparameters need to be adjusted. Experiments were carried out with different tuning strategies to induce models and to evaluate hyperparameters’ relevance using 94 classification datasets from OpenML. The experimental results point out that different hyperparameter profiles for the tuning of each algorithm provide statistically significant improvements in most of the datasets for CART, but only in one-third for C4.5. Although different algorithms may present different tuning scenarios, the tuning techniques generally required few evaluations to find accurate solutions. Furthermore, the best technique for all the algorithms was the Irace. Finally, we found out that tuning a specific small subset of hyperparameters is a good alternative for achieving optimal predictive performance. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
Descrição: dc.description | Federal University of Technology - Paraná (UTFPR) Campus of Apucarana, PR | - |
Descrição: dc.description | Faculty of Science Institute of Computer Science Pavol Jozef Šafárik University (UPJS) | - |
Descrição: dc.description | Faculty of Informatics ELTE - Eötvös Loránd University | - |
Descrição: dc.description | São Paulo State University (Unesp) Campus of Itapeva, SP | - |
Descrição: dc.description | Department of Computer Science Federal University of São Carlos (UFSCar), SP | - |
Descrição: dc.description | Department of Engineering and Architecture University of Trieste (UniTS) | - |
Descrição: dc.description | Eindhoven University of Technology (TU/e) | - |
Descrição: dc.description | Institute of Mathematics and Computer Sciences (ICMC) University of São Paulo (USP), SP | - |
Descrição: dc.description | São Paulo State University (Unesp) Campus of Itapeva, SP | - |
Descrição: dc.description | FAPESP: 2012/23114-9 | - |
Descrição: dc.description | FAPESP: 2015/03986-0 | - |
Descrição: dc.description | CNPq: 409371/2021-1 | - |
Formato: dc.format | 1364-1416 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Data Mining and Knowledge Discovery | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | CART | - |
Palavras-chave: dc.subject | Decision tree induction algorithms | - |
Palavras-chave: dc.subject | Hyperparameter profile | - |
Palavras-chave: dc.subject | Hyperparameter tuning | - |
Palavras-chave: dc.subject | J48 | - |
Título: dc.title | Better trees: an empirical study on hyperparameter tuning of classification decision tree induction algorithms | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: