Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Henn, Vivian Vanessa França | - |
Autor(es): dc.creator | Gimenes, Lucas | - |
Data de aceite: dc.date.accessioned | 2025-08-21T18:09:39Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T18:09:39Z | - |
Data de envio: dc.date.issued | 2024-07-05 | - |
Data de envio: dc.date.issued | 2024-07-05 | - |
Data de envio: dc.date.issued | 2024-07-01 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/256334 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/256334 | - |
Descrição: dc.description | Com o progresso significativo no controle experimental da deposição atômica na construção de nanoestruturas, os materiais nanoestruturados, como as super-redes condutoras, vêm sendo cada vez mais integrados em dispositivos tecnológicos avançados. Contudo, a otimização da funcionalidade desses dispositivos exige uma compreensão aprofundada de suas propriedades físicas, o que, por sua vez, demanda uma abordagem quântica rigorosa para o estudo de sistemas complexos. Neste cenário, a Teoria do Funcional da Densidade (DFT) emerge como uma ferramenta computacional de destaque para a análise de nanoestruturas, devido à sua capacidade de fornecer informações detalhadas sobre as propriedades eletrônicas e estruturais. Neste trabalho, empregamos cálculos baseados em DFT para explorar as propriedades físicas fundamentais de super-redes condutoras, modeladas segundo o paradigma do modelo de Hubbard. Além da análise da energia e do perfil de densidades, investigamos o grau de emaranhamento presente nas nanoestruturas, um aspecto crítico para o avanço de dispositivos voltados ao processamento de Informação Quântica. A análise revelou que, enquanto a energia geralmente não é afetada por transições de fase quânticas, os perfis de densidade indicam uma transição de Mott em super-redes com baixo potencial externo. | - |
Descrição: dc.description | The significant progress in the experimental control of atomic deposition for the construction of nanostructures, nanostructured materials, such as conducting superlattices, has been increasingly integrated into advanced technological devices. However, optimizing the functionality of these devices requires a deep understanding of their physical properties, which, in turn, requires a rigorous quantum approach to the study of complex systems. In this scenario, Density Functional Theory (DFT) emerges as a prominent computational tool for the analysis of nanostructures, owing to its ability to provide detailed insights into electronic and structural properties. This work employes DFT-based calculations to explore the fundamental physical properties of conducting superlattices, modeled according to the Hubbard model paradigm. In addition to analyzing energy and density profiles, we investigate the degree of entanglement present in the nanostructures, a critical aspect for the advancement of devices aimed at Quantum Information Processing. The analysis revealed that, while the energy is generally unaffected by quantum phase transitions, the density profiles indicates a Mott transition in superlattices with low external potential. | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
Descrição: dc.description | 2021/02342-2 | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | Nanoestruturas | - |
Palavras-chave: dc.subject | Materiais nanoestruturados | - |
Palavras-chave: dc.subject | Informação quântica | - |
Palavras-chave: dc.subject | Computação quântica | - |
Palavras-chave: dc.subject | Mecânica quântica | - |
Título: dc.title | Cálculos de DFT para a investigação de propriedades de super-redes condutoras | - |
Título: dc.title | DFT calculations applied to one-dimensional superlattices | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: