Detecção de anomalias utilizando autoencoder variacional

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCosta, Kelton Augusto Pontara da-
Autor(es): dc.creatorComini, João Pedro Marin-
Data de aceite: dc.date.accessioned2025-08-21T21:27:26Z-
Data de disponibilização: dc.date.available2025-08-21T21:27:26Z-
Data de envio: dc.date.issued2024-05-06-
Data de envio: dc.date.issued2024-05-06-
Data de envio: dc.date.issued2019-11-11-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/255487-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/255487-
Descrição: dc.descriptionA Internet se desenvolveu de forma exponencial nos últimos anos, junto a isso, os riscos de agentes maliciosos atuarem se tornou ainda maior. Neste trabalho, realizou-se um estudo profundo sobre um modelo de aprendizagem de máquina conhecido como autoencoder variacional, que foi treinado e desenvolvido junto a diversos modelos de aprendizado de máquina, implementados através das frameworks TensorFlow e Keras para a linguagem de programação Python. Utilizou-se o conjunto de dados NSL-KDD, uma versão refinada do conjunto de dados KDDcup99, cuja preparação e tratamento também foram abordados em um capítulo deste trabalho. Os modelos foram desenvolvidos com o objetivo de avaliar sua efetividade no campo de detecção de anomalias, mais especificamente ao se tratar de anomalias em redes de computadores. Seus resultados foram comparados com diversos classificadores já estabelecidos na área e resultados satisfatórios foram obtidos. Espera-se, então, que este trabalho sirva de apoio para trabalhos futuros envolvendo autoencoders variacionais e/ou detecção de anomalias.-
Descrição: dc.descriptionThe Internet has developed exponentially in recent years, and the risk of malicious agents acting has become even greater. In this work, an in-depth study of a neural network model known as variational autoencoder, which was trained and developed along with several machine learning models, implemented through TensorFlow and Keras frameworks for the Python programming language. We used the NSL-KDD dataset, a refined version of the KDDcup99 dataset, whose preparation and treatment were also covered in a chapter of this paper. The models were developed with the objective of evaluating their effectiveness in the field of anomaly detection, more specifically when dealing with anomalies in computer networks. Their results were compared with several classifiers already established in the area and good results were obtained. This project is then expected to support future work involving variational autoencoders and/or anomaly detection.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Estadual Paulista (UNESP)-
Direitos: dc.rightsinfo:eu-repo/semantics/openAccess-
Palavras-chave: dc.subjectAprendizado de máquina-
Palavras-chave: dc.subjectDetecção de anomalias-
Palavras-chave: dc.subjectRedes de computadores-
Palavras-chave: dc.subjectAnomaly detection-
Palavras-chave: dc.subjectAutoencoder-
Palavras-chave: dc.subjectVariational Inference-
Palavras-chave: dc.subjectMachine learning-
Título: dc.titleDetecção de anomalias utilizando autoencoder variacional-
Título: dc.titleAnomaly detection using variational autoencoder-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.