Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Andrade, Antonio Aparecido de | - |
Autor(es): dc.creator | Esteves, Livea Cichito | - |
Data de aceite: dc.date.accessioned | 2025-08-21T17:06:02Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T17:06:02Z | - |
Data de envio: dc.date.issued | 2024-04-18 | - |
Data de envio: dc.date.issued | 2024-04-18 | - |
Data de envio: dc.date.issued | 2024-03-07 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/255205 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/255205 | - |
Descrição: dc.description | O objetivo deste trabalho é apresentar a estrutura do anel de inteiros algébricos e o discriminante do anel de inteiros algébricos de corpos de números do tipo L=Q (θ), onde θ=\sqrt[2^k]{d} e d ≠1 é um inteiro livre de quadrados. Inicialmente, apresentamos a estrutura dos anéis de inteiros algébricos dos corpos L=Q(\sqrt[2^k]{d}) com d ≡ 2,3(mod 4) onde, nesse caso, L é monogênico. Na sequência, apresentamos bases integrais e os respectivos discriminantes para alguns corpos da forma Q(\sqrt[2^k]{d}), para k=2,3,4, 5, onde exploramos as estruturas dos anéis de inteiros algébricos de acordo com os valores de d. Posteriormente, como resultados principais desta tese, generalizamos essas bases e, com isso, também determinamos uma fórmula para o discriminante do anel de inteiros algébricos desses corpos L. Nessa linha, apresentamos essas generalizações da seguinte forma: quando d ≡ 5 (mod 8), quando d ≡ 9 (mod 16) e, por fim, englobando todos os casos, apresentamos uma base integral e o discriminante do anel de inteiros algébricos dos corpos puros Q(\sqrt[2^k]{d}) para d ≡ 2^l+1 (mod 2^{l+1} ), onde 2 ≤ l ≤ k-1 e para d ≡ 1(mod 2^{k+1}). | - |
Descrição: dc.description | The objective of this work is to present an integral basis and the discriminant of algebraic number fields of the type L=Q(θ), where θ=\sqrt[2^k]{d} and d\neq 1 is a square-free integer. Initially, we present the rings of algebraic integers of fields L=Q(\sqrt[2^k]{d}) with d ≡ 2,3(mod\ 4) where, in this case, L is monogenic. Afterwards, we present integral bases and the respective discriminants for some fields of the form Q(\sqrt[2^k]{d}), for k=2,3,4, 5, exploring their algebraic integer rings according to the values of d. Subsequently, as the main results of this thesis, comprising the main part of this work, we generalize these bases and, with this, we also determine a formula for the discriminant of these fields L. Along these lines, we present these generalizations as follows: when d ≡ 5 (mod 8), when d ≡ 9 (mod 16), and finally, encompassing all cases, we present an integral basis and the discriminant of pure fields Q(\sqrt[2^k]{d}) for d ≡ 2^l+1 (mod 2 ^{l+1}) where 2 ≤ l ≤ k-1 and for d ≡ 1(mod 2^{k+1}). | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
Descrição: dc.description | CAPES: 001 | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/restrictedAccess | - |
Palavras-chave: dc.subject | Corpo de números | - |
Palavras-chave: dc.subject | Corpos puros | - |
Palavras-chave: dc.subject | Anel de inteiros algébricos | - |
Palavras-chave: dc.subject | Base integral | - |
Palavras-chave: dc.subject | Discriminante | - |
Palavras-chave: dc.subject | Number field | - |
Palavras-chave: dc.subject | Pure fields | - |
Palavras-chave: dc.subject | Ring of algebraic integers | - |
Palavras-chave: dc.subject | Integral bases | - |
Palavras-chave: dc.subject | Discriminant | - |
Título: dc.title | Anel de inteiros algébricos e discriminante de uma família de corpos de números cujo grau é uma potência de 2 | - |
Título: dc.title | Ring of algebraic integers and discriminant of a family of number fields whose degree is a power of 2 | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: