Um framework híbrido do DMAIC para a integração da metodologia de superfície de resposta e métodos de otimização multiobjetivo

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorAneirson Francisco da Silva-
Autor(es): dc.contributorFernando Augusto Silva Marins-
Autor(es): dc.creatorKaio Max Aranda-
Data de aceite: dc.date.accessioned2025-08-21T21:18:32Z-
Data de disponibilização: dc.date.available2025-08-21T21:18:32Z-
Data de envio: dc.date.issued2024-04-05-
Data de envio: dc.date.issued2024-04-05-
Data de envio: dc.date.issued2023-11-05-
Fonte completa do material: dc.identifierhttps://hdl.handle.net/11449/255007-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/255007-
Descrição: dc.descriptionEm muitas situações práticas, é importante avaliar as relações entre os fatores que compõe um processo industrial e os efeitos de uma ou mais variáveis de resposta que são de interesse de uma empresa. A principal contribuição dessa dissertação é propor uma nova estrutura conceitual híbrida baseada na estrutura metodológica do DMAIC (Define - Definir, Measure - Medir, Analyse - Analisar, Improve - Melhorar, Control - Controlar), para otimizar problemas experimentais complexos com múltiplas respostas. Esse procedimento combina a Metodologia de Superfície de Resposta (RSM – Response Surface Methodology) com as funções Desirability (D), Modified Desirability (MD) e Compromise Programming (CP) com os algoritmos Generalized Reduce Gradient (GRG) e Evolutionary Solving Method (ESM). Fez-se uma aplicação real a um processo de laminação de vidros para descrever o uso da estrutura proposta. O procedimento permitiu testar diversas configurações envolvendo as funções D, MD, CP, adotando o algoritmo GRG e ESM, para otimizar o processo industrial estudado. A melhor configuração foi definida por um experimento prático de confirmação validada por engenheiros e especialistas da empresa que foi o objeto desse estudo, sendo esta a função Desirability clássica com o algoritmo Evolucionário. Como exemplo das vantagens de adotar a estrutura proposta na resolução de problemas de laminação de vidros, a melhor solução resultou em 49,86% de aumento na vida útil de rebolos de lapidação, correspondendo uma redução de 927 kg de aço por ano, e 41,7% de redução no consumo de pedras de dressagem, contabilizando uma redução total de 17.200 pedras por ano.-
Descrição: dc.descriptionIn many practical situations, it is important to evaluate the relationships between the factors that compose an industrial process and their effects on one or more response variables that are of interest to an enterprise. The main contribution of this thesis is to propose a new conceptual hybrid framework based on the DMAIC (Define, Measure, Analyze, Improve, and Control) methodological structure, to optimize complex experimental problems with multiple responses. This procedure combines Response Surface Methodology, with the Desirability (D), Modified Desirability (MD), Compromise Programming (CP) functions, with Generalized Reduced Gradient (GRG) and Evolutionary Algorithms (EA). We made a real application to a glass lamination process to describe how to use the proposed framework. The procedure allowed several configurations to be tested involving the D, MD and CP functions, adopting the GRG and EA, to optimize the studied industrial process. The best configuration was determined through a practical confirmation experiment validated by engineers and experts from the company that was the subject of this study, with this being the classical Desirability function with the Evolutionary algorithm. As examples of the advantages of adopting the proposed framework in the glass lamination problems, the best solutions resulted in a 49.86% increase in grinding wheel shelf life, corresponding to a 927kg reduction of steel-use per year, and a 41.7% reduction in dressing stone consumption, saving 17,200 stones per year.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Estadual Paulista (UNESP)-
Direitos: dc.rightsinfo:eu-repo/semantics/openAccess-
Palavras-chave: dc.subjectFramework híbrido do DMAIC-
Palavras-chave: dc.subjectOtimização multiobjetivo-
Palavras-chave: dc.subjectMetodologia de superfície de resposta-
Palavras-chave: dc.subjectFunções aglutinadoras-
Palavras-chave: dc.subjectProcesso de laminação de vidros-
Palavras-chave: dc.subjectControle de processo-
Palavras-chave: dc.subjectControle de qualidade-
Palavras-chave: dc.subjectVidro - Indústria-
Palavras-chave: dc.subjectPlanejamento de produção-
Palavras-chave: dc.subjectHybrid DMAIC framework-
Palavras-chave: dc.subjectMulti-objective optimization-
Palavras-chave: dc.subjectResponse surface methodology-
Palavras-chave: dc.subjectAgglutination functions-
Palavras-chave: dc.subjectGlass lamination process-
Título: dc.titleUm framework híbrido do DMAIC para a integração da metodologia de superfície de resposta e métodos de otimização multiobjetivo-
Título: dc.titleA hybrid DMAIC framework for integrating response surface methodology and multi‑objective optimization methods-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.