Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Bueno, Douglas Domingues | - |
Autor(es): dc.contributor | Gonsalez-Bueno, Camila Gianini | - |
Autor(es): dc.creator | Lopes, Kayc Wayhs | - |
Data de aceite: dc.date.accessioned | 2025-08-21T17:20:27Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T17:20:27Z | - |
Data de envio: dc.date.issued | 2024-01-30 | - |
Data de envio: dc.date.issued | 2024-01-30 | - |
Data de envio: dc.date.issued | 2023-09-20 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/253116 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/253116 | - |
Descrição: dc.description | Damage detection using Structural Health Monitoring (SHM) techniques is a challenge with increasing importance for the scientific community. SHM processes usually involve selecting actuators to excite the structure and sensors to measure outputs. The sensor outputs are post-processed to detect the damage. Usually, aspects such as the size and location of the actuators and sensors, and the choice of the excitation frequency are neglected in SHM campaigns, and they are very relevant to many damage detection algorithms. This thesis presents an approach to define the sensor's size in terms of its position in the structure considering the scattering of longitudinal and flexural waves in damaged plate-like structures. Modeling is developed to compute each wave packet of reflected and transmitted waves separately, which allows one to describe the wave scattering in thin plates with symmetric damage. Numerical simulations are carried out and the results show that the sensor size can be adjusted to improve the damage detection process. Results from experimental tests are presented to demonstrate the approach considering circular actuators. A damage index R is introduced and used to detect the damage. The modeling of circular piezoelectric transducers bonded to thin plates is also presented, and it demonstrates that there are optimal frequencies to create and measure these waves. In addition, new equations to compute the sensors' output voltages in terms of the actuator input voltage applied are presented and demonstrated from experimental tests. The findings contribute to SHM systems based on longitudinal and flexural wave propagation to detect damage in plate-like structures. They contribute to the current state of the art in wave propagation SHM by investigating the effects of different excitation frequencies and the influence of the damage parameters and sensor sizing on the resulting waves. | - |
Descrição: dc.description | Detecção de danos via técnicas de Monitoramento da Integridade Estrutural (SHM, do inglês Structural Health Monitoring) é um desafio com crescente importância para a comunidade científica. Processos de SHM geralmente envolvem a seleção de atuadores para excitação da estrutura e sensores para medir as respostas. As respostas obtidas com os sensores são pós-processadas para detectar o dano. Normalmente, aspectos como o tamanho e localização dos atuadores e sensores, e a escolha da frequência de excitação são negligenciados nas campanhas de SHM, embora sejam muito relevantes para qualquer algoritmo de detecção de danos. Esta tese apresenta uma metodologia para definir o tamanho do sensor em termos de sua posição na estrutura, considerando a dispersão de ondas longitudinais e de flexão em estruturas do tipo placa. A modelagem é desenvolvida para se obter separadamente cada pacote de onda refletida e transmitida, o que permite descrever a dispersão da onda em placas finas com danos simétricos. Simulações numéricas são apresentadas e os resultados mostram que o tamanho do sensor pode ser ajustado para melhorar a detecção do dano. Resultados de testes experimentais são apresentados para demonstrar a abordagem considerando um atuador circular. Um índice de dano R¯ é proposto e usado para detectar o dano. A modelagem de transdutores piezoelétricos circulares para gerar e capturar ondas longitudinais e de flexão também é apresentada. Ela permite demonstrar que existem frequências ótimas para criar e medir essas ondas. Além disso, novas equações são apresentadas e demonstradas para calcular as tensões elétricas de saída medidas pelos sensores em termos da tensão de entrada aplicada ao atuador. Os resultados contribuem para a evolução de sistemas de SHM baseados na propagação de ondas longitudinais e flexurais para detectar danos em placas e, também para o estado da arte na propagação de ondas para SHM, abordando os efeitos de diferentes frequências de excitação e a influência dos parâmetros de dano e dimensão de sensor. | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
Descrição: dc.description | FAPESP: 2019/21149-9 | - |
Descrição: dc.description | FAPESP: 2021/11493-4 | - |
Descrição: dc.description | CNPq: 133397/2019-0 | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | Wave propagation | - |
Palavras-chave: dc.subject | Structural health monitoring | - |
Palavras-chave: dc.subject | Symmetric damage | - |
Palavras-chave: dc.subject | Circular piezoelectric transducers | - |
Palavras-chave: dc.subject | Optimal frequencies | - |
Palavras-chave: dc.subject | Propagação de ondas | - |
Palavras-chave: dc.subject | Monitoramento da integridade estrutural | - |
Palavras-chave: dc.subject | Dano simétrico | - |
Palavras-chave: dc.subject | Transdutores piezoelétricos circulares | - |
Palavras-chave: dc.subject | Frequências ótimas | - |
Título: dc.title | The effect of damage on wave propagation in plates with circular piezoelectric transducers | - |
Título: dc.title | O efeito do dano na propagação de ondas em placas com transdutores piezoelétricos circulares | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: