Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Gonçalves, Aparecido Carlos | - |
Autor(es): dc.creator | Carnahuba, Lucas da Silva | - |
Data de aceite: dc.date.accessioned | 2025-08-21T19:34:06Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T19:34:06Z | - |
Data de envio: dc.date.issued | 2024-01-07 | - |
Data de envio: dc.date.issued | 2024-01-07 | - |
Data de envio: dc.date.issued | 2023-10-10 | - |
Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/252456 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/252456 | - |
Descrição: dc.description | O escopo deste trabalho se concentrou na exploração da linguagem de programação Python como base para um projeto de análise de dados. Para o embasamento, a metodologia CRISP-DM foi adotada como guia para estruturar a abordagem de análise. Foi feita uma análise a partir de uma base de dados de manutenção preditiva, disponibilizado pelo site da University of California Irvine. Dentro desse processo, Python foi utilizado de forma proeminente, destacando sua capacidade de manipular conjuntos de dados. Tal abordagem permitiu não apenas a extração de insights relevantes, mas também a realização de previsões embasadas na análise dos dados. Vale destacar a criação de um painel interativo, a interatividade desse painel apresenta potencial para guiar a tomada de decisões do usuário, ilustrando que a linguagem Python emerge como uma escolha robusta e eficaz para empreendimentos que envolvam análise de dados. | - |
Descrição: dc.description | The core focus of this project revolved around exploring the Python programming language as the foundation for a data analysis endeavor. To underpin this approach, the CRISP-DM methodology was adopted as a framework to structure the analysis. A comprehensive analysis was conducted, stemming from a predictive maintenance database made available through the University of California lrvine's website. ln this context, the Python language played a prominent role, showcasing its innate ability to handle intricate data sets. This approach not only facilitated the extraction of pertinent insights but also enabled the formulation of predictions grounded in the analysis of said data. A noteworthy achievement was the creation of an interactive dashboard. The inherent interactivity of this dashboard emerges as a guiding factor for user decisions. This underscores the aptitude of the Python language as a robust and effective choice for endeavors that encompass data analysis comprehensively. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
Palavras-chave: dc.subject | Manutenção preditiva | - |
Palavras-chave: dc.subject | Python | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Análise de dados | - |
Palavras-chave: dc.subject | Predictive maintenance | - |
Palavras-chave: dc.subject | Data analysis | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | CRISP-DM | - |
Título: dc.title | Manutenção preditiva: análise de dados usando python | - |
Título: dc.title | Predictive maintenance: data analysis using python | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: