
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Silva, Samuel da | - |
| Autor(es): dc.creator | Almeida, Estênio Fuzaro de | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T20:46:19Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T20:46:19Z | - |
| Data de envio: dc.date.issued | 2023-12-18 | - |
| Data de envio: dc.date.issued | 2023-12-18 | - |
| Data de envio: dc.date.issued | 2023-11-16 | - |
| Fonte completa do material: dc.identifier | https://hdl.handle.net/11449/252128 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/252128 | - |
| Descrição: dc.description | Um dos grandes desafios na implementação de algoritmos de aprendizado de máquina para a detecção de danos é a reutilização dos classificadores previamente treinados. Em resposta a essa problemática, técnicas de transferência de aprendizado são comumente empregadas, com a maioria delas centrada no mapeamento de atributos, notadamente os parâmetros modais em estruturas dinâmicas. No entanto, é imperativo reconhecer que as condições de contorno exercem uma influência significativa no comportamento mecânico associado à vibração, indo além da influência dos parâmetros modais. Outros fatores, como geometria, modo de vibração e estado de dano, também desempenham papéis relevantes. Dentre esses, as condições de contorno destacam-se como fator preponderante, substancialmente impactando a transferência de aprendizado entre estruturas. A dificuldade reside na determinação das combinações ideais de atributos de modos e contornos distintos que resultam em uma transferência bem-sucedida. Neste contexto, este trabalho propõe uma abordagem inovadora, introduzindo uma análise de similaridade prévia à transferência de aprendizado. O objetivo é determinar as combinações mais eficazes de atributos para cada situação, inclusive avaliando o impacto do estado de dano na similaridade. A hipótese subjacente sustenta que uma maior similaridade conduz a uma transferência de aprendizado mais eficiente. A metodologia empregada envolve a utilização da similaridade cosseno para a seleção dos casos mais similares, fundamentada na premissa de que maior similaridade resulta em uma transferência mais eficaz. Após a seleção de atributos, a transferência de aprendizado é conduzida por meio do algoritmo Transfer Component Analysis (TCA). A análise compara casos de baixa similaridade com aqueles de alta similaridade, corroborando a hipótese de que maior similaridade está associada a uma transferência de aprendizado eficaz. Dois conjuntos de dados são analisados: o primeiro composto por vigas variando as condições de contorno, obtidas por simulação numérica utilizando o método de elementos finitos; o segundo proveniente de uma bancada experimental de junções parafusadas com danos de desaperto. O estudo visa verificar se a análise de similaridade pode indicar combinações superiores, especialmente em cenários com variação de contorno e presença de danos. | - |
| Descrição: dc.description | One of the major challenges in implementing machine learning algorithms for damage detection is the reuse of previously trained classifiers. In response to this issue, transfer learning techniques are commonly employed, with most of them focusing on attribute mapping, notably modal parameters in dynamic structures. However, it is imperative to recognize that boundary conditions exert a significant influence on the mechanical behavior associated with vibration, extending beyond the influence of modal parameters. Other factors such as geometry, vibration mode, and damage state also play relevant roles. Among these, boundary conditions stand out as a predominant factor, substantially impacting the transfer of knowledge among structures. The difficulty lies in determining the optimal combinations of features from different modes and contours that result in successful transfer. In this context, this work proposes an innovative approach by introducing a similarity analysis prior to transfer learning. The goal is to determine the most effective attribute combinations for each situation, including an evaluation of the impact of damage state on similarity. The underlying hypothesis suggests that higher similarity leads to more efficient transfer learning. The employed methodology involves using cosine similarity for selecting the most similar cases, based on the premise that greater similarity results in more effective transfer. After attribute selection, transfer learning is conducted through the Transfer Component Analysis (TCA) algorithm. The analysis compares cases of low similarity with those of high similarity, supporting the hypothesis that higher similarity is associated with effective transfer learning. Two datasets are analyzed: the first consisting of beams with varying boundary conditions obtained through numerical simulation using the finite element method; the second originating from an experimental setup of bolted joints with loosening damage. The study aims to determine if similarity analysis can indicate superior combinations, especially in scenarios with varying boundary conditions and the presence of damage. | - |
| Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
| Descrição: dc.description | 2021/06133-9 | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Publicador: dc.publisher | Universidade Estadual Paulista (UNESP) | - |
| Direitos: dc.rights | info:eu-repo/semantics/openAccess | - |
| Palavras-chave: dc.subject | Análise de similaridade | - |
| Palavras-chave: dc.subject | Adaptação de domínio | - |
| Palavras-chave: dc.subject | Transferência de aprendizado | - |
| Palavras-chave: dc.subject | Estruturas gêmeas | - |
| Palavras-chave: dc.subject | Detecção de dano | - |
| Palavras-chave: dc.subject | Similarity analysis | - |
| Palavras-chave: dc.subject | Domain adaptation | - |
| Palavras-chave: dc.subject | Transfer learning | - |
| Palavras-chave: dc.subject | Twin structures | - |
| Palavras-chave: dc.subject | Damage detection | - |
| Título: dc.title | Aprimoramento da transferência de aprendizado utilizando análise de similaridade entre estruturas de viga | - |
| Título: dc.title | Improving transfer learning using similarity analysis among beam structures | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: